NEWS MITTEILUNGEN

  • 18. Juli 2022
    Yamaha präsentiert auf der Motek 2022 seine neuesten Roboter für fortschrittliche Automatisierung
    Die Yamaha Motor Robotics FA Section wird den Besuchern der Motek 2022 zeigen, wie ihre Familie kompakter, kostengünstiger Industrieroboter die Produktivität gängiger Prozesse zur Handhabung von Bauteilen und zur Produktmontage erhöht.
  • 4. Juli 2022
    Yamaha zeigt auf der Automatica 2022 kostengünstige, flexible Automatisierung für neue industrielle Herausforderungen
    Die Yamaha Motor Robotics FA Section hat vorgeführt, wie erschwingliche Roboter Prozesse in verschiedenen Branchen verändern können. Auf der Automatica 2022, die vom 21. bis 24. Juni in München stattfand, wurden den Besuchern zahlreiche Live-Vorführungen präsentiert.
  • 14. April 2022
    Automatisierung der Batterieproduktion für sichere und bezahlbare Energie
    Batteries are to have a central role in the future of sustainable energy and mobility. Affordable, high-quality lithium battery packs are needed in diverse kWh ratings to power vehicles ranging from eBikes, drones, and small city cars, to large electric vehicles (EVs), trucks and buses.
  • 4. April 2022
    Yamaha demonstriert auf der Automatica 2022 die Stärke von Roboter-Teamwork
    Die Yamaha Motor Robotics FA Section wird auf der Automatica 2022 in München vom 21. bis 24. Juni an ihrem Stand Nr. 314 in Halle B5 Industrieroboter vorführen, die autonom zusammenarbeiten, um Produktivität zu steigern und Abfall zu reduzieren.
  • 17. März 2022
    Yamaha Motor unterstützt die Ukraine und ihre Nachbarregionen mit humanitärer Hilfe
    Die Yamaha Motor Co., Ltd. gab heute ihre Entscheidung bekannt, 700.000 US-Dollar für humanitäre Hilfe in der Ukraine und den umliegenden Regionen zu spenden. Diese Spende wird über Japan Platform, eine gemeinnützige Organisation, abgewickelt. Die Mittel werden ausdrücklich für die Bereitstellung humanitärer Hilfe an Bedürftige verwendet. Yamaha Motor drückt allen von dieser Krise betroffenen Opfern sein tiefes Mitgefühl aus und hofft, dass so schnell wie möglich wieder Frieden einkehrt.
  • 28. Februar 2022
    Auswahl und Einsatz von Einachs-Robotern
    Ein Industrieroboter kann ein einfacher Ein-Achsen-Roboter für einfache Transport- und Positionieraufgaben sein oder mehrere Achsen umfassen, die zusammenarbeiten. Die neuesten einachsigen Modelle vereinen fortschrittliche Konstruktionsmerkmale mit Softwaretools zur Verbesserung von Genauigkeit, Geschwindigkeit und Benutzerfreundlichkeit.
  • 23. Februar 2022
    Erweiterung und Renovierung des Büros von Yamaha Motor Robotics in Hamamatsu zur Erhöhung der Kapazität
    Ausweitung des Geschäftsumfangs und Stärkung der Rentabilität durch strategische Investitionen in wachsende Unternehmen
  • 21. Februar 2022
    Yamaha präsentiert neue Initiativen zur Unterstützung des Vertriebsnetzes für die Factory-Automation
    Die Yamaha Motor Robotics Factory Automation Section hat ihr jährliches Distributorentreffen 2022 online abgehalten.
  • 10. Januar 2022
    Yamaha Motor erweitert Robonity-Serie um Linearaktuatoren LBAR und ABAR
    Linearschlitten-Modelle um schlanke Ausführungen LBAS12 und ABAS12 erweitert
  • 18. Oktober 2021
    Yamaha zeigte modernste, erschwingliche Robotertechnologien auf der Motek 2021
    Rückkehr zum persönlichen Kontakt: innovative, perfekt zugängliche Roboter, schnelle und effiziente Bildverarbeitung und flexible Hochgeschwindigkeitslösungen für den Werkstücktransport für eine sauberere und sicherere Montage-Industrie
  • 11. Oktober 2021
    SCARA-Roboter für künftige Herausforderungen in der Fertigung bestens aufgestellt
    Erschwingliche SCARA-Roboter können Unternehmen dabei helfen, eine Vielzahl von Herausforderungen zu bewältigen und bieten mit jeder neuen Generation zusätzliche Flexibilität, höhere Leistung und größere Benutzerfreundlichkeit.
  • 29. September 2021
    Yamaha ernennt Growskills Robotics zum Distributor für sein Automatisierungsportfolio in Portugal
    Yamaha Robotics Factory Automation section has appointed Growskills Robotics as its distributor in Portugal. The move strengthens support for enterprises seeking to modernise their processes using the Company’s portfolio of robots for light industrial applications. “With experience in education and training, as well as sales and support, Growskills Robotics can show the market how our technologies transform key metrics like quality, delivery, and productivity,” said Jumpei Ninomiya, Yamaha FA Sales Manager for Europe. “Together, we can help customers automate and improve the performance of numerous processes that involve component picking, placement, packaging, and light mechanical assembly.”   Growskills in Matosinhos “We are looking forward to a successful and rewarding collaboration with Yamaha, using flexible, affordable robots to overcome the challenges that face manufacturing and logistics companies,” said António Fernandes, General Manager, Growskills Robotics. “The Yamaha portfolio addresses inline and standalone applications, and enables end-to-end automated solutions that are fast, reliable, and scalable.” The Yamaha portfolio includes SCARA and cartesian, multi-axis robot arms, and single-axis robots, featured for use in environments from small factories and workshops to laboratory cleanrooms. There is a wide selection of SCARA robots, including the competitively-priced YK-XE series that offers arm-length options up to 710mm and load capacity from 4kg to 10kg. In addition, Yamaha’s LCMR200 programmable high-speed linear conveyor modules handle workpiece transport and are quieter and more flexible than conventional belt-and-roller conveyors. The RCXiVY2+ system simplifies adding vision capabilities and connects directly with the RCX340 robot controller for efficient performance with minimal latency.   ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCMR200 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 23. August 2021
    Yamaha präsentiert auf der Motek 2021 die neuesten Roboter für die industrielle Automatisierung
    Yamaha Motor Europe FA Section wird auf der Motek 2021, der Messe für industrielle Automatisierung, die vom 5. bis 8. Oktober in Stuttgart stattfindet, flexible und kostengünstige Roboterlösungen präsentieren.
  • 14. Juni 2021
    Yamaha ernennt S.D.A. zur Vertretung für Industrieroboter für die Slowakei und die Tschechische Republik
    Yamaha Motor Europe Factory Automation Section hat eine Vertriebsvereinbarung mit der in der Slowakei ansässigen S.D.A. s.r.o. bekannt gegeben, um den Vertrieb und den Kundensupport für Yamaha-Industrieroboter in der Slowakei und der Tschechischen Republik zu erweitern. S.D.A (Sensors. Drives. Automation) verfügt über ein reichhaltiges Fachwissen und ein umfangreiches Portfolio an zugehörigen Produkten führender Anbieter, die die Belieferung mit hochleistungsfähiger, flexibler Automatisierungstechnik erleichtern. Das Hauptbüro für Vertrieb und Technik in Banská Bystrica in der Zentralslowakei ist optimal gelegen, um Unternehmen in der gesamten Region zu bedienen.
  • 8. Juni 2021
    Yamaha rüstet sich für die Automatica Sprint 2021
    Yamaha Motor Robotics FA Section präsentiert auf der automatica sprint 2021 vom 22. bis 24. Juni sein Industrieroboter-Portfolio und zeigt die durchgängige Automatisierung komplexer Prozesse für maximale Produktivität
  • 10. Mai 2021
    Vier Herausforderungen in der Montage, die flexibles Materialhandling erfordern
    Erfolg in der Fertigung ist ein sich ständig änderndes Ziel. Planer sehen sich regelmäßig mit den Forderungen konfrontiert, Durchlaufzeiten zu reduzieren, Kapazitäten zu erhöhen, neue Produkte schneller einzuführen und die verfügbare Fläche effizient zu nutzen. Die Art und Weise, wie Werkstücke zwischen den verschiedenen Produktionsprozessen transportiert werden, kann den Grad der Zielerreichung maßgeblich beeinflussen.
  • 26. April 2021
    Yamaha Motor setzt Gewinnserie bei iF-Design- und Red Dot-Design-Awards fort
    Yamaha Motor Europe gab heute bekannt, dass sowohl der Industrieroboter LCMR200 (lineares Fördermodul für Transfersysteme) als auch der Dreirad-Pendler-Roller TRICITY 300 anlässlich des Product Design 2021-Wettbewerbs mit dem international renommierten iF Design Award und dem Red Dot Award ausgezeichnet wurden. Dies ist das achte Jahr in Folge, in dem das Unternehmen einen iF Design Award erhielt und das zehnte Jahr in Folge, in dem es einen Red Dot Award gewonnen hat. Dieses Jahr bekam erstmals ein Industrieroboter von Yamaha Motor eine dieser beiden Auszeichnungen.
  • 1. März 2021
    Mit dem richtigen Rezept andere hinter sich lassen
    Businesses that build, handle, and ship products are looking for ways to increase productivity by raising output without compromising accuracy. It’s the key to delivering the best possible value and the fastest turnaround to maximize customer satisfaction and maintain the competitive edge. Automation as Opportunity Introducing new technology to automate assembly and handling processes is known to increase output and quality while at the same time helping reduce costs. The first companies to get the right recipe can quickly leave others behind. Infusing robots into industrial activities could be a part of the solution. Exact figures are application dependent, but one estimate is that introducing a robot to perform a single key process in a production line can increase output by as much as 40%. The simple facts are that robots can significantly increase speed, accuracy, reliability, and repeatability. They can also reduce the floorspace needed to perform a given process, enaling more efficient use of factory real-estate. The latest models are more affordable than ever. They are fast and compact and can be arranged to interact with traditional automation or to support processes performed by human workers. This makes them easy to deploy and use. But what can they really do? Which processes should be robotized first? How should the factory layout be reorganised to make way for them? And what about scalability? Today’s robots are available in sizes suitable for handling items from a few grams to several kilograms. Popular types include SCARA robots, cartesian, and single- or multi-axis robots that can be used in a standalone application dedicated to one process or as part of a group or assembly cell configured for a sequence of processes. From One Process to Many Companies are using these robots to accomplish a wide variety of automation projects. Yamaha has collaborated with customers and technology partners to solve industrial challenges through creative deployment of robots, achieving increased throughput and quality. With their generous movement range, high speed, and high accuracy, SCARA robots are an ideal vehicle to take on specific assembly processes. Yamaha YK-XG SCARA robots have been integrated in self-contained machines designed to perform one specific process, such as soldering (figure 1), screwing, or labelling. Figure 1. Yamaha’s YK-XG SCARA robot powers Reeco’s automated soldering machines. The SCARA is combined with conveyors, SMEMA electrical interfaces, and associated mechanisms to create a turnkey solution that industrial corporations can quickly install in their factory. the standardized SMEMA interfaces simplify connections to upstream and downstream automation, creating a fully inline solution. Alternatively, workpieces can be introduced manually or inserted using a feeder. These robot stations allow manufacturers to take a flexible, scalable approach to introduce robots in their factories. One by one, processes formerly done by hand, such as soldering connecting wires or through-hole components in circuit boards, tightening screws to a specific torque, and affixing labels can be automated to deliver greater speed, repeatability, and predictable tact times. Scaling up, two or more SCARA robots can be configured to cooperate and hence automate more complex assembly processes by combining their picking, placing, and positioning skills. Some examples in action today include assembling small automotive parts in high quantities and with high accuracy. Picking constituent parts from different pallets, checking each part using camera vision, and ensuring exact orientation using reference marks, the two robots finally hold the pieces together for soldering or spot-welding. Each assembled component is then palletised ready to be removed from the machine for final packing and shipping. These are just two examples showing how simple automation of a limited range of processes using low-cost SCARA robots can deliver rapid returns. However, bringing together a more diverse combination of robot types, including cartesian and single-axis or dual-axis robots, brings the opportunity to scale up from just one or two basic processes all the way to complete end-to-end assembly that fully automates production of items comprising multiple constituent parts. End-to-End Automation The Yamaha robot line up enables system integrators to build a complete assembly solution comprising the most suitable combination of individual robots. In a typical robot project, system integrators need to work out how to move components or work pieces from one machine to another using a belt-and-roller conveyor. Yamaha’s unique linear conveyor modules, such as the LCMR200 (figure 2), have changed everything by introducing multi-programmable transport that allows speed, position stops, and direction to be configured using RCX-Studio 2020: the same environment used to simulate, program, and operate all robots in the cell. Figure 2. The LCMR200 linear conveyor module brings programmable flexibility to workpiece transport. Capable of high-speed bidirectional motion and rapid acceleration, as well as small incremental movements, the LCMR features servo-controlled direct drive that eliminates the mechanical stoppers and position sensors typically needed to control a conventional conveyor. Each slider can be programmed and controlled independently, transforming the “passive flow” of an ordinary conveyor into actively controllable transport. With individual drives built-in, and controlled through Yamaha’s YHX series Universal Controller, transportation using LCMR modules can save about 65% of space behind the control panel and reduce wiring time by up to 50%. Using RCX-Studio 2020, workpiece transportation can be designed as an integral part of the robot solution, bringing valuable extra flexibility. Modules can be specified in various lengths, bringing the opportunity to optimize the layout of the assembly cell to maximize throughout and ensure the smallest possible overall dimensions. The LCMR200 provides extra convenience by allowing processes such as mechanical assembly or electrical testing to be performed on components while they remain on the transport module. Robot Selection and Programming From the outside, and even after an introductory demonstration, one robot can look very much like another. When choosing, it’s important to assess not only load-carrying capability, which is easy to compare using datasheets, but also other aspects of the design such as speed and cycle time, power consumption, and reliability. Yamaha’s position-detection system featured in YK-X series SCARA robots uses resolvers instead of typical encoders that can be affected by contamination such as grease or dust as well as magnetic or electrical fields. In addition, beltless drive featured on selected models ensures consistent long-term accuracy with no deterioration over time. Special models such as dust-proof and drip-proof variants are also available for use in environments such as clean rooms and food-preparation areas. Robot Vision, Simplified A simple, “unseeing” robot can handle a wide variety of industrial processes satisfactorily. However, introducing vision to the solution (figure 3) expands opportunities to tackle more complex processes, verify positional accuracy, and increase quality. Often, this is a complicated challenge that requires special machine-vision expertise to make the vision system talk to the robot controller. Yamaha brings vision into the robot programming and control environment with the iVY2+ vision system. The system includes camera modules up to 5Mpixel and camera-interface cards that are plug-in compatible with the RCX3 series robot controllers. There are also special vision instructions that simplify programming using RCX-Studio 2020 and enable high-speed component searching and tracking. Figure 3. Introducing vision increases performance and makes new applications possible. Simplifying the infusion of machine vision into the robot lets users take advantage of advanced capabilities such as blob detection, which enables picking, presence recognition, and high-speed counting when working with irregular shaped objects such as foodstuffs and clothing. The iVY2+ system also contains an image-edge search engine that enhances part detection under difficult lighting conditions. A wizard to help calibrate the system, and a simplified three-step process for workpiece registration that requires the user to select only image-capture, contour, and detection-position settings, eliminate laborious tasks and help users complete their setups as much as 80% faster than typical general-purpose vision systems.   Conclusion Industrial robots are now more affordable and easier to deploy in manufacturing, packaging, and logistics activities than ever before. A wide variety of robot types such as SCARA, cartesian, and single- or multi-axis is available, in small sizes suitable for light duty, although few robot makers are able to provide all types off the shelf in a wide range of sizes. These extra choices let users more easily scale their systems and start with a small trial to test the results. With increasing confidence, more and more processes can be automated. With the added flexibility of Yamaha’s LCMR200 linear conveyor module, a complete automated assembly cell can be built within a small footprint and quickly fine-tuned using graphical programming software. When considering the introduction of robots to automate one or more processes, design features that affect reliability should be considered alongside key performance parameters such as the payload rating, speed, and power consumption. Ensuring scalability is also critical. Integrating robot vision can be more complex that it may seem, programming can be difficult, and interactions between the robot and camera can be slow. A solution that promises easier integration of more advanced capabilities can deliver superior cost of ownership in the longer term. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM200R linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 22. Februar 2021
    Yamaha stärkt Vertriebsnetz für Factory-Automation beim jährlichen Distributor-Treffen
    Yamaha Motor Robotics FA Section, which provides advanced robots and associated expertise for diverse industrial assembly, parts-handling, and packaging applications, has held its 2021 annual distributor conference online, taking advantage of the chance to present diverse content and invite worldwide participation. The meeting opened with a welcome from the Netherlands by Yamaha Motor Europe’s CEO followed by live presentations from Japan including a new demonstration of the latest equipment capabilities.Yasushi Miyake, Branch Manager of Yamaha Motor Europe IM business said, “We have handled this year together strongly by supporting our customers and partners consistently and making our teamwork even more purposeful.” The demonstration highlighting advanced technical capabilities combined Yamaha’s latest YK-XG high-speed, compact SCARA robot and the new LCMR200 linear conveyor modules. The programmable modules deliver next-generation flexibility when transporting items between work processes, including bidirectional motion with software-configurable parameters that are easy to setup and fine-tune. Minimal hardware is needed, with the built-in motor driver and external YHX controller, enabling integrators to create compact and reliable solutions to automation challenges. A new working model, presented live from Japan, highlighted the speed and flexibility of Yamaha’s latest robots. Jumpei Ninomiya, Sales Manager for Yamaha’s FA Section, presented Yamaha’s award for Most Valuable Distributor to Renex. As Yamaha’s agent for Poland and the Balkans, Renex has delivered outstanding support including investing in training opportunities for partners. Renex’s management commented, “We are always committed to providing the utmost support for our customers and partners and will continue to respond with innovative solutions. It’s exciting and rewarding to share this journey with Yamaha.” Yamaha’s Jumpei Ninomiya presented Renex with the Most Valuable Distributor Award. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM200R linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 2. November 2020
    High-Speed Precision Coating with Robots Raises
    Manufacturing Productivity
    Der Einsatz eines Roboters zum Auftragen von Beschichtungsmaterialien kann die Produktivität erheblich steigern und wird durch die Kopplung von Servo- und Dosiersteuerung zur Gewährleistung optimaler Geschwindigkeit und stabiler Schichtdicke weiter verbessert.
  • 19. Oktober 2020
    Führender Automotive-Zulieferer findet schnellere Lösung für Hochleistungs-Robot Vision
    Ein führender Hersteller von Automomotive-Komponenten hat durch die Geschwindigkeit und Einfachheit des dedizierten Yamaha-Roboter-Vision-Systems RCXiVY2+ seine Automatisierungsherausforderungen effizient gemeistert.
  • 21. September 2020
    Wege in die Roboter-Prozessautomatisierung: Klein anfangen und dann richtig groß werden
    Die Einführung der Roboterautomatisierung in einen etablierten Workflow kann kompliziert und teuer erscheinen. Mit der neuesten, modularen Technologie und intuitiven Setup-Tools können Unternehmen
  • 14. September 2020
    Yamaha ernennt Etama zum Vertriebspartner für das Industrieroboter-Portfolio im Baltikum
    Etama bringt ein synergetisches Produktportfolio und eine starke Präsenz in Litauen, Lettland und Estland ein, um das Geschäft für zukunftsweisende Automatisierung auszubauen.
  • 7. September 2020
    Yamaha präsentiert Flexibilitätssteigerung für Roboter mit Software-Paket für Asycube-Vibrationsfeeder
    Das RCX320/340-Plugin integriert Asycube in SCARA- und kartesische Roboter und erhöht die Flexibilität bei der Bestückung mit Yamaha RCXiVY2+ Non-Stop-Vision
  • 8. Juni 2020
    Yamaha ernennt Routeco zum Vertriebspartner für Industrierobotik in Großbritannien
    Routecos Marktposition sowie seine technische Kompetenz und hervorragende Service-Infrastruktur machen das Unternehmen zum idealen Partner für die Stärkung von Yamahas Präsenz in Großbritannien
  • 2. Juni 2020
    Yamaha Motor bringt neues Linearfördermodul LCMR200 auf den Markt
    Beitrag zur Rationalisierung und Qualitätsverbesserung an komplexen und diversifizierten Produktionsstandorten zur Realisierung einer Fabrik der nächsten Generation
  • 18. Mai 2020
    Yamaha startet #DiscoverYamahaRobotics-Kampagne zur Einführung zahlreicher neuer Produkte des Jahres 2020 sowie der Präsentation von Aktionsangeboten
    Inhalte werden regelmäßig aktualisiert. Die Sektion Yamaha Motor Europe Factory Automation startet #DiscoverYamahaRobotics in sozialen Netzwerken und online und beschreibt schnelle und kosteneffiziente Wege zu fortschrittlicher Roboterautomation für Fertigung, Verpackung, Logistik und mehr.
  • 14. Mai 2020
    Yamaha Motor Europe bringt neues Visionsystem RCXiVY2+ auf den Markt
    Erkennt problemlos unregelmäßig geformte Objekte; geeignet u. a. für Lebensmittel, Arzneimittel, Kosmetika und Kleidung Yamaha Motor Europe kündigte heute an, dass es am 1. Juni das Bildverarbeitungssystem RCXiVY2+ auf den Markt bringen wird, das über eine neue „Blob-Erkennung“ verfügt, die die Kommissionierung, Anwesenheitserkennung und Hochgeschwindigkeitszählung mehrerer Werkstücke für unregelmäßig geformte Objekte wie Lebensmittel und Kleidung ermöglicht. Als Nachfolger des bestehenden iVY2-Systems bietet dieses neue Modell neben neuen Funktionen auch eine Hochleistungskamera und eine verbesserte Verarbeitungsleistung, die eine Reduzierung der Erkennungszeit um bis zu 45% im Vergleich zum aktuellen Modell ermöglicht.
  • 14. Mai 2020
    Yamaha Motor bringt Support-Software für Robotersteuerung der RCX3-Serie auf den Markt
    Neue Funktionen reduzieren die Einrichtungszeit des Robotersystems erheblich Yamaha Motor Europe gab heute bekannt, dass das Unternehmen am 14. Mai 2020 die Support-Software RCX-Studio 2020 für die Robotersteuerungen der RCX3-Serie auf den Markt gebracht hat. Dieses neue Produkt erweitert die bestehende Software RCX-Studio Pro um neue Funktionen wie einen 3D-Simulator und Programmvorlagen (automatische Mustergenerierung) und bietet darüber hinaus eine verbesserte Benutzerfreundlichkeit.
  • 9. April 2020
    Yamaha Motor stellt die SCARA-Roboter YK610XE-10 und YK710XE-10 vor
    Yamaha YK610XE-10 Erweiterung des Portfolios der produktivitätssteigernden Serie YK-XE Yamaha Motor Europe gab heute bekannt, dass die SCARA-Roboter der Serie YK-XE um die Modelle YK610XE-10 (610 mm Armlänge) und YK710XE-10 (710 mm Armlänge) erweitert werden. Die beiden neuen Modelle, die am 16. April auf den Markt kommen, bauen auf der hohen Geschwindigkeit und Effizienz der aktuellen Serie YK-XE auf.
  • 2. April 2020
    Innovationen bei SCARA-Robotern steigern Leistung und Zuverlässigkeit
    SCARA-Roboter können Pick&Place- und kleine Montageprozesse wie den Transfer von Werkstücken zwischen einzelnen Prozessen sowie das Schrauben und
  • 20. Februar 2020
    Yamaha stellt auf der Hannover Messe 2020 Innovationen für eine schnellere und einfachere Roboterautomation vor
    Am Stand G25 in Halle 6 präsentiert das Unternehmen die neuesten Entwicklungen in den Bereichen Hochgeschwindigkeitsbewegung, Bildverarbeitungssysteme und Programmierwerkzeuge
  • 18. Februar 2020
    Yamaha inspiriert europäische Partner in der Mission zur Förderung der Automatisierung
    Distributorentreffen der Factory Automation Section verifiziert Erfolge und setzt neue Ziele
  • 17. Februar 2020
    Yamaha Motor Europe Robotics division establishes Customer Service & Support Function for FA Section
    Mit werksunterstützten Wartungs-, Reparatur- und Hochrüstungs-Dienstleistungen bietet Yamaha Motor für seinen wachsenden Kundenstamm einen vollständigen Lifecycle-Support Die FA-Section von Yamaha Motor Europe hat eine neue Kundendienst- und Support-Abteilung eröffnet, um Kunden in ganz Europa fachkundig zu unterstützen. Der Customer Service & Support mit Sitz in der Yamaha Motor Europe-Zentrale in Neuss ist einsatzbereit, um mit Systemintegratoren und Endanwendern zusammenzuarbeiten und werksunterstützte Wartungs-, Reparatur- und Hochrüstungsdienste für vorhandene Anwendungen anzubieten. „Wir haben die FA-Sektion gegründet, um die Yamaha-Robotertechnologie in Europa noch stärker zu implementieren und haben in kurzer Zeit vielen Unternehmen in verschiedenen Branchen dabei geholfen, Prozesse wie Materialtransport, Produktionsmontage und Verpackung zu transformieren“, sagte Ryosuke Nakamura, General Manager der FA-Sektion von Yamaha Motor Europe. „Die neue Service-Engineering-Abteilung erweitert unser Angebot im Bereich Solution-Engineering, um unseren wachsenden Kundenstamm über den gesamten Produkt-Lebenszyklus hinweg zu unterstützen. Die Service-Abteilung der FA Section ist ab Februar 2020 aktiv und bereit, Kundenservice-Termine zu vereinbaren. Weitere Informationen finden Sie auf der Website der Yamaha Motor Europe FA Section unter https://www.yamaha-motor-im.de/en/fa/.
  • 17. Oktober 2019
    Yamaha zeigt auf der Motek 2019 produktivitätssteigernde Roboterinnovationen
    Das einzigartige flexible und skalierbare Fördermodul LCM100 und innovative Roboter- und Bildverarbeitungsfeatures vereinfachen die Integration und maximieren Leistung und Effizienz Yamaha Motor Europe Factory Automation Division hat gezeigt, wie die neuesten Robotersysteme es Unternehmen ermöglichen, Produktivität, Durchsatz und Qualität in wichtigen Fertigungsprozessen zu steigern, und zwar in Demonstrationen, die auf der Motek-Messe 2019 in Stuttgart vom 7. bis 10. Oktober präsentiert wurden. Herr Ryosuke Nakamura, Branch Manager Yamaha Motor Europe IM Business, kommentierte: „Wir hatten das Privileg, einflussreiche Besucher von Fertigungsstandorten aus ganz Europa empfangen zu dürfen und ihnen die innovativen und überzeugenden Lösungen der Roboterprozessautomatisierung von Yamaha präsentieren zu können“. Die Besucher des Standes konnten sich selbst ein Bild von Yamahas umfassender Palette an kartesischen und SCARA- sowie ein- und mehrachsigen Robotern für die Effizienzsteigerung bei wichtigen industriellen Prozessen machen. In fünf Demonstrationen wurden spezielle Designmerkmale vorgestellt, die die Geschwindigkeit erhöhen, den Setup vereinfachen und die Produktivität maximieren:
  • 19. September 2019
    Verbessertes Visionsystem für Yamaha-Roboter vereinfacht die Einrichtung der Linie und steigert deren Leistung
    Das neue iVY2-Machine-Visionsystem profitiert von speziellen Bildverarbeitungs-Anweisungen der Multi-Robotersteuerung RCX340 Yamaha Factory Automation Section hat das Visionsystem der nächsten Generation für seine einzigartig flexible Palette von SCARA-, Orbital- und kartesischen, sowie ein- und mehrachsigen Robotern vorgestellt. Das auf Yamahas aktueller Robotersteuerung RCX340 beruhende neue iVY2-Visionsystem vereinfacht den Linien-Setup, erhöht die Leistung und integriert die Funktionen des Machine-Visionsystems erstmals in das Robotersteuerungsprogramm, was die Effizienz erhöht und die Bedienung vereinfacht. iVY2 unterstützt Kameras bis zu 5 Megapixel, um hochaufgelöste Bilder für eine schnelle und stabile Werkstückerkennung zu ermöglichen. Darüber hinaus erspart die durch Softwareassistenten geführte Autokalibrierung und die unkomplizierte, dreistufige Werkstückerfassung aufwändige Einrichtaufgaben. Benutzer können den Setup bis zu 80% schneller abschließen als bei herkömmlichen Universal-Visionssystemen. Weitere leistungsstarke Funktionen des iVY2 Vision-Systems sind eine Bildkanten-Suchmaschine, die die Teileerkennung unter schwierigen Lichtverhältnissen verbessert, und ein DVI-I-Ausgang, der es dem Anwender ermöglicht, den Suchstatus jederzeit zu analysieren, selbst während der Kalibrierung oder wenn der Roboter automatisch arbeitet. Parameter für bis zu 254 Teile-Arten können im System hinterlegt werden.
  • 11. September 2019
    SCARA-Roboter „YK400XE“ neu im Programm
    Der Roboter überzeugt durch erhöhte Nutzlast und verringerte Zykluszeit Die Yamaha Motor Europe Fa Section wird am 17. September 2019 den neuen SCARA-Roboter „YK400 XE“ (mit einer Armlänge von 400 mm) vorstellen. Der „YK400XE“ ist ein Nachfolgemodell des „YK400XR“, der sich durch hohe Genauigkeit und Leistung bei gesenktem Preis auszeichnet. Die maximale Nutzlast konnte mit 4 kg um das 1,4-fache gegenüber dem Vorgängermodell Modell gesteigert werden. Die Standardzykluszeit wurde um ca. 10% reduziert und liegt jetzt bei 0,41 Sekunden. Erreicht wurde die Leistungssteigerung durch eine Verstärkung des Antriebs und der Robustheit des Arms sowie verbesserter Leistung des Controllers „RCX340“. So konnte die Produktionsleistung merklich erhöht werden. Trotz erhöhter maximaler Nutzlast und verbesserter Zykluszeit wurde eine herausragende Kosteneffizienz erreicht. Da die Einbaumaße voll kompatibel zum Vorgängermodell sind, ist eine Umrüstung auf das neue Modell problemlos möglich. Yamaha präsentiert den neuen Roboter vom 7. bis 10. Oktober 2019 auf der Fachmesse Motek in Stuttgart: Stand 7328, Halle 7.
  • 23. August 2019
    Yamaha präsentiert auf der Motek 2019 die hocheffiziente Echtzeit-Bildverarbeitung für eine schnellere Roboterautomatisierung
    Messestand zeigt breites Lösungsportfolio zur Vereinfachung und Rationalisierung der Prozessautomatisierung Die Yamaha Motor Europe Factory Automation Section wird auf der Motek in Stuttgart vom 7. bis 10. Oktober 2019 Technologien zur Beschleunigung von Robotik-Prozessen, einschließlich der visuellen On-the-Fly-Inspektion und -Ausrichtung, vorstellen. Das On-the-Fly-Visionsystem von Yamaha basiert auf Technologien, die im Bereich der präzisen oberflächenmontierbaren Elektronikbaugruppe perfektioniert wurden, um aufgenommene Teile mit voller Geschwindigkeit zu prüfen und auszurichten, wodurch die Taktzeit von Prozessen wie Palettieren, Depalettieren und mechanische Montage erheblich reduziert wird. Die Demonstration läuft auf dem preisgünstigen SCARA-Roboter YK-400XR und zeigt die Unterschiede des Hochgeschwindigkeitssystems gegenüber konventioneller Bildverarbeitung auf, durch die potenzielle Zeiteinsparungen und Produktivitätsvorteile realisiert werden. Auf dem Stand Nr. 7328 in Halle 7 können sich die Besucher über die Linear-, Mehrachs- und SCARA-Roboter sowie die kartesischen Roboter von Yamaha informieren, die in vielen Größen und Konfigurationen einschließlich spezieller Reinraumvarianten erhältlich sind. Gemeinsam schaffen sie eine einzigartige Möglichkeit, die Systemintegration aus einer Hand zu vereinfachen und zu rationalisieren. Das komplette Portfolio umfasst Antriebe und Controller, darunter den hochmodernen RCX340, das einzigartige programmierbare Linearfördermodul LCM100, iVY Plug & Play-Vision-Systeme und Zubehör wie elektrische Greifer und hochauflösende Megapixel-Kameras mit flexiblen Objektivoptionen.
  • 4. Juli 2019
    Die weiterentwickelte SCARA-Roboterfamilie von Yamaha steigert Geschwindigkeit, Vielseitigkeit und Laufzeit
    Erweiterte Größen- und Nutzlastbereiche sowie die Nutzung innovativer Funktionen maximieren Möglichkeiten zur Automatisierung Yamaha Motor Europe Factory Automation Section, der einzige Hersteller von Robotern in allen gängigen Industrieformaten für die End-to-End-Roboter-Prozessautomatisierung, erweitert seine SCARA-Familie. Die verfügbaren Armlängen reichen jetzt von nur 120 mm bis 1200 mm und die maximale Nutzlast von 1 kg bis 50 kg, um eine Vielzahl von Pick & Place-, Ver- und Entpackungsaufgaben sowie mechanischen Montageaufgaben zu beschleunigen. Die YK-XG und YK-TW Orbital-SCARA-Serien enthalten neueste Funktionen, die eine effiziente Bewegung und überlegene Langzeitgenauigkeit gewährleisten. Durch die direkte Platzierung der Rotationsachse auf das Untersetzungsgetriebe und den Einsatz eines speziell entwickelten Hohlwellenmotors ermöglicht der riemenlose Antrieb des YK-XG-Roboters eine schnelle Drehung der R-Achse mit großen versetzten Lasten, die bei herkömmlichen, riemengetriebenen Robotern eine spürbare Verzögerung erfordern würden. Die neuesten Modelle zeichnen sich durch eine um 45% höhere Geschwindigkeit der X-Y-Achse gegenüber den Vorgängergenerationen aus und erreichen jetzt 7,6 m/s, eine um 35% höhere Winkelgeschwindigkeit bis zu 2,3 m/s und eine um 93% höhere Geschwindigkeit der R-Achse von 1700 Grad/s.
  • 18. Juni 2019
    Yamaha Robotics Distributorentreffen verbindet Technologie mit Track-Action Motorradrennen
    Europäische Vertriebspartner und Distributoren diskutieren Geschäftliches und erleben die Rennen beim MotoGP in Barcelona Die Yamaha Factory Automation Section (FA Section) kombinierte ihren Geschäftsschwerpunkt in der Robotik mit der Begeisterung für MotoGP auf dem jährlichen Distributorentreffen in Barcelona während des MotoGP-Rennwochenendes vom 14. und 15. Juni. Alle europäischen Roboter-Vertriebspartner des Unternehmens haben sich versammelt, um über Technologie und Strategie zu sprechen – und die Motorsport-Heroen von Yamaha in Aktion zu sehen. Die Gruppe machte sich am Samstag sofort an die Arbeit, als die Leiter der Yamaha FA Section die neuesten Innovationen präsentierten, die das Unternehmen voranbringen sollen. Yamaha ist der einzige Industrieroboterhersteller, der Standardprodukte in allen Formaten anbietet – SCARA, kartesische, lineare sowie ein- und mehrachsige Roboter – mit dem zusätzlichen Vorteil des einzigartigen, programmierbaren Roboter- Fördermoduls LCM100. In individuellen Gesprächen am Nachmittag haben die Distributoren ihre Pläne vorgestellt und die Unterstützungen besprochen, die sie für das kommende Jahr benötigen. „Die Zeit ist reif für signifikante Investitionen in die Robotertechnologie in allen Branchen – von der Präzisionsmontage und der Hochgeschwindigkeitsfertigung bis hin zu Verpackung und Logistik – die die Produktivität auf die nächsthöhere Stufe heben“, sagte Herr Ichiro Arimoto, General Manager der Yamaha Motor Europe Robotics Division. „Wir werden den Support für unsere Vertriebspartner hier in Europa weiter verstärken, um den Kunden die fortschrittlichsten, flexibelsten und effizientesten Lösungen bieten zu können.“
  • 4. Juni 2019
    Yamaha liefert konfigurierbare Linear-Fördermodule für Roboter-Montagezellen
    Flexibles Linearfördermodul LCM100 steigert die Effizienz im Vergleich zu konventionellen Riemen- und Rollenförderern. Das Linearfördermodul LCM100, eine einzigartige Lösung für die Roboter-Montage von Yamaha Factory Automation Section, ermöglicht einen saubereren, leiseren und flexibleren Werkstücktransport. Durch Vereinfachung des Produktionsstarts, Reduzierung von Zykluszeiten und Erhöhung der Genauigkeit steigern die Module Produktivität und Ausbeute, während sie gleichzeitig den Geräuschpegel senken, die Zuverlässigkeit erhöhen und die Größe der Roboter-Montagezellen verringern. Im Gegensatz zu herkömmlichen Riemen- und Rollenförderern enthält jedes LCM100-Modul einen unabhängig gesteuerten Hochgeschwindigkeits-Linearantrieb, der bidirektionale Bewegungen und programmierbare Geschwindigkeiten von bis zu 3000 mm/s ermöglicht. Produktionslinien können optimal konfiguriert werden. Sie sind unabhängig von der längsten Prozesszykluszeit und sparen Platz durch die effiziente Nutzung von Inline-Equipment. Weitere Vorteile der Linearantriebe sind reibungsarmes und verzögerungsfreies Beschleunigen und Abbremsen. Die robusten und stabilen Schlitten mit einer Positioniergenauigkeit von besser als ± 0,015 mm ermöglichen die Durchführung von Montagearbeiten direkt auf dem Transportmodul. Ohne dass Werkstücke von einem herkömmlichen Förderband zu einem Arbeitstisch umgeladen werden müssen, können Taktzeiten kürzer und Montagezellen kleiner und kostengünstiger werden. Ohne Mikro-Endschalter oder Endanschläge lassen sich die Schlitten-Zielpositionen schnell und einfach per Software umprogrammieren. Darüber hinaus sind die LCM100-Module auf einfache Austauschbarkeit und schnelle Rekonfiguration ausgelegt, so dass Montagezellen insbesondere für kleine Produktionsstückzahlen schnell und damit kostengünstig eingerichtet werden können. Die Module lassen sich leicht entfernen oder ersetzen, um Ausfallzeiten zu minimieren oder in anderen Montagezellen verwenden, um die Auslastung zu maximieren.
  • 22. Mai 2019
    Yamaha FA Section stellt Roboter-Produktlinie vor, um die Herausforderungen der Automatisierung in der Praxis zu lösen
    Auf der Hannover Messe im April dieses Jahres dominierten Leichtbau-Koboter. Obwohl sie eine verlockende Vision für unsere industrielle Zukunft bieten, werden viele Automatisierungsherausforderungen effizienter gelöst, indem koordinierte Hochgeschwindigkeitsroboter in einer voll integrierten Montagezelle zusammenarbeiten. Die Factory Automation Section von Yamaha ist der einzige Roboterhersteller, der ein Portfolio anbietet, das alle gängigen Industrierobotertypen wie kartesische und SCARA-Roboter sowie ein- und mehrachsige Knickarmroboter umfasst. Das breite Spektrum an Maschinen, Steuerungen, Programmiersoftware und Zubehör ermöglicht es Lösungsintegratoren, ganze Montageabläufe zu automatisieren. Dabei profitieren sie von einem komfortablen technischen Support aus einer Hand und einer gemeinsamen Umgebung für Programmierung und Steuerung. Die Palette umfasst Maschinengrößen für Nutzlasten von 5 kg bis 50 kg, mit speziellen Optionen wie Hochgeschwindigkeits-Pick & Place-Roboter, staub- und tropfwassergeschützte Ausführungen sowie Reinraummodelle. Merkmale wie verschmutzungsresistente Positionsresolver und innovative, vektorgeregelte Antriebe sorgen für höchste Geschwindigkeit und Zuverlässigkeit. Darüber hinaus überwindet das einzigartige, für eine Zusammenarbeit mit Robotern ausgelegte Linearfördermodul LCM100 von Yamaha die Einschränkungen des konventionellen Riemen- und Rollentransports, indem es bidirektionale Flexibilität, unabhängige Modulgeschwindigkeitssteuerung und einfache Umprogrammierung ermöglicht. Flexible Steuerungsoptionen sorgen für Geschwindigkeit und Einfachheit, wobei die Bildverarbeitung vollständig in die Robotersteuerung integriert ist und Yamahas spezielle Bildverarbeitungsbefehle für eine einfache Einrichtung und sofortige Reaktion sorgen. Die Eliminierung der Schnittstellenverzögerung, die typischerweise die Kommunikation mit einem herkömmlichen, unabhängigen Bildverarbeitungssystem verlangsamt, ermöglicht höhere Bewegungsgeschwindigkeiten für eine verbesserte Taktzeit. To achieve the most efficient solution to your automation challenges in the real world today, contact Yamaha FA Section office in Neuss. To find out more and get in touch with Yamaha FA Section European sales managers please visit www.yamaha-motor-im.eu.
  • 11. April 2019
    Yamaha Factory Automation Section eröffnet ein Vertriebs- und Supportbüro für Roboter in Europa
    Die Yamaha Factory Automation Section, eine Unterabteilung der Yamaha Motor Robotics Business Unit, hat ein Europa-Büro eröffnet, um den Support für Vertriebspartner und Kunden von Yamahas hochentwickelten, industriellen Robotersystemen und -produkten zu verstärken. Das neue Support-Büro, Teil der Yamaha Motor Europe N.V. in Neuss bei Düsseldorf, ist strategisch günstig gelegen, um intensiven Kontakt mit Yamahas Vertretungen und Distributoren in ganz Europa zu halten. Das Netzwerk besteht aus Partnern mit langjähriger Erfahrung in der Industrierobotik, die einen schnell wachsenden Kundenstamm bedienen und jetzt von einem noch besseren Zugang zu umfangreicheren Dienstleistungen direkt von Yamaha profitieren. „Es ist der richtige Zeitpunkt, um die Unterstützung für unsere europäischen Partner zu verstärken, da führende Unternehmen die Robotereinsätze als eine der Grundlagen der digitalen Transformation spürbar erhöhen“, sagte Ichiro Arimoto. „Yamaha Factory Automation Section bietet eine einheitliche Produktpalette, erstklassigen Support und die Gewissheit, dass die eigene Produktion, Forschung und Entwicklung es den Industrieanwendern ermöglicht, sich souverän mit Robotern zu beschäftigen und einen maximalen Wettbewerbsvorteil zu erzielen.“ Die neuen Robotergenerationen, die modernste Steuerungstechniken mit maschinenlernender, künstlicher Intelligenz (KI) nutzen, treiben ein schnelles Produktivitätswachstum voran und sind ein wichtiger Faktor für Industrie 4.0 und das Industrial Internet of Things (IIoT).
  • 4. März 2019
    Yamaha Motor Exhibits at World’s Leading Industrial Technology Trade Fair HANNOVER MESSE 2019 — Abundant Robot Line-up Provides Optimal Solutions for Diverse Automation
    WATA, March 4, 2019—Yamaha Motor Co., Ltd. (Tokyo:7272) announced today that it will exhibit a booth based on the theme of “YAMAHA ROBOT BEST SOLUTION – Improved Production Line Performance,” at the HANNOVER MESSE 2019, a B to B industrial technology trade show to be held in Hannover, Germany, from Monday, April 1 to Friday, April 5, 2019. The HANNOVER MESSE is the world’s leading industrial trade fair, at which leading-edge industrial technology and products are gathered in one place. (The 2018 event saw exhibits held by approx. 6,500 companies attracting around 220,000 visitors). The booth has increased space to about twice that of last year where it will showcase demonstrations such as the “Linear Conveyor Module LCM 100,” a linear motor-based transport robot, and a SCARA robot which boasts high speed and high accuracy. These exhibits work toward greater productivity and improved variability on production lines, providing best solutions for factory automation. Yamaha Motor: Exhibitions and Demonstrations 1) Speaker assembly demonstration using the LCM 100 transport robotLinear Conveyor Module LCM100The LCM 100 can transport workpieces at high speed and can be assembled directly on the slider, so that the transfer time is shortened considerably. In addition, with linear motor control, it is possible to change the stop position and process similar operations, bringing greater production line designs with higher levels of variability. 2) On-the-fly Function Demonstration (non-stop recognition camera)Robot Integrated Vision System “iVY 2” & Multi-Axis Controller “RCX 340”Our exhibition will introduce a function that can shorten pick and place tact times with position correction after test piece handling. With the robot-integrated vision system “iVY2,” through the multi-axis controller “RCX 340” capable of synchronous operation with multiple stand robots, recognition, correction and mounting can be performed without stopping robot operation, working to help improving throughput significantly. Contact info Oumayma Grad Marketing Communications Manager Hansemannstraße 12 41468 Neuss Germany Office: +49 2131 2013 538 Mobile: +49 1517 0233 297 Fax: +49 2131 2013 550 Email: oumayma.grad@yamaha-motor.de Web: www.yamaha-motor-im.eu 3) Auto parts sealing demonstrationSCARA robot “YK 400 XR” & Cartesian RobotsWith the SCARA robot “YK 400 XR” boasting a standard cycle time of 0.45 seconds, the dual lane assembled cartesian robot greatly shortens the cycle time of the coating process.For test pieces on cartesian robots with two lanes, one carries out coating, while the other replaces the test piece using a SCARA robot. As a result, the work ratio of the dispenser is improved which significantly increases productivity. European Industrial Robot Market Overview (Total welding, painting/coating, actuator, assembly, conveyance, and clean conveyance system) The industrial robot market in Europe continues to grow due to the declining labor force, rising wages, increased factory automation and quality improvement needs. History of Yamaha Motor Industrial Robots 1974 : Yamaha Motor begins research and development into industrial robots in order to streamline production and increase machining precision in its own motorcycle factories 1976 : SCARA robots introduced to Yamaha Motor motorcycle production lines 1984 : IM Business Unit established (Yamaha Motor Hamakita Plant) / SCARA robot sales begin 1991 : IM Technology Center completion (Sodecho, Hamamatsu city, Shizuoka Prefecture) 2006 : IM Technology Center and factory expansion 2013 : China (Suzhou City) sales office established Linear Conveyor Module LCM100 is launched 2016 : Integrated control robot system “Advanced Robotics Automation Platform”is launched Launch of Linear Conveyor Module “LCM-X”, and Single-axis robot “GX Series” Launch of Stepping Motor Electric Actuator “YLE series,” and integrated Controller “YHX Series” 2017 : New Robotics Business building begins operation 2018 : First exhibition at HANNOVER MESSE 2018 Opening of the Yamaha Motor Advanced Technology Center (Yokohama) Yamaha Motor’s lineup of products to powerfully support the automation of production sites is wide-ranging in variation. YMC builds on these strengths to pursue greater efficiency and quality in increasingly complex, diverse, and high-speed production sites. About YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM100 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Hamamatsu, Yamaha FA Section serves customers globally through its worldwide sales network spanning China, Taiwan, Korea, south Asia, north America, Australia/New Zealand, and Europe. www.yamaha-motor-im.eu
  • 18. Juni 2018
    Solving Surface-Mount Assembly Challenges Presented by 0201mm Components
    Yamaha Motor Europe Robotics Division – SMT section Richard Vereijssen B.Sc – Product Marketing manager Introduction: Miniaturization, Driven By Demand The global electronics industry’s ability to deliver seemingly limitless ongoing advancements in product capabilities has encouraged an insatiable consumer demand for more, better, and smaller. Demands for high functionality of mobile devices, smart watches, military, medical, audio, and wearable technology continue to drive requirements for miniaturisation. The advancements being achieved in large-scale CMOS integration, described by Moore’s Law, are among several factors currently aiding relentless gains in functionality, performance and miniaturisation. The fabrication and packaging processes for manufacturing chip-size resistors and capacitors also continue to advance, enabling components to be produced down to sizes in the region of 0.25mm x 0.15mm (0201). Excellent dimensional stability enables these components to be assembled using standard inline surface-mount equipment. Initially, the tiniest components (not only 0201: adoption of 01005 will begin in the foreseeable future) are expected to be used in extremely space-constrained applications, such as System in Package (SiP) or Package in Package (PiP) devices. These answer demands for extreme miniaturisation and circuit densification in mobile devices, like smartphones and tablets. Ultimately, of course, they will be demanded for general surface-mount assembly in PC motherboards, industrial automation products, IoT nodes and gateways, and others. Automotive electronics is another sector that demands increasing circuit capability and complexity, where small size and lightness are key desires of product designers. 1. Progression of Chip-Component Sizes Continuous advancements, both in manufacturing capabilities and market demand for smaller or more feature-rich end products, has driven relentless miniaturisation of component sizes generally, manifested in the emergence of semiconductor packages like flip-chip and CSP, power-discrete packages like LGA, and surface-mount chip resistors and capacitors in ever-smaller form factors: as figure 1 shows, the 1005 (1.0mm x 0.5mm) form factor has been the most widely used since the mid 2000s to date, while more recently an increasing number of designs have targeted the smaller 0603 (0.6mm x 0.3mm) size; sometimes even when design space is not a concern. The popularity of 0402 (0.4mm x 0.2mm) devices is currently rising, while 0201 devices are expected to supersede the older 1608 (1.6mm x 0.8mm) form factor around the year 2022. Figure 1. The 0201mm form factor for chip components is expected to become dominant by 2022. The table compares metric and imperial component designations, with their applicable sizes. Confusion abounds, particularly where designations clash - such as 0603, 0402 and 0201. As the drive continues to explore further miniaturisation, it will be preferred to standardise on metric nomenclature going forward as an aid to communication and to avoid confusion when referencing components. Table 1. Comparison of metric and imperial designations for standard chip components. Note that only chip resistors – not capacitors – have been offered to the market in the 03015 form factor. Moreover, two different "0201" outlines have been proposed by various manufacturers: 0.2mm × 0.1mm and 0.25mm × 0.125mm. The industry needs a single commonly accepted standard and, indeed, 0.25mm × 0.125mm is expected to become the accepted specification. The shock and awe comes when comparing the area and volume of the later, smaller form factors with their predecessors like 1005. The area of an 0201 component, when mounted on the substrate, is 0.0313mm2: only 6% of the area occupied by a 1005-size chip. Moreover, the volume of a 0201 capacitor – typical height 0.125mm - is 0.004mm3, or just 1.6% of the volume of the 1005 parts. 0201 resistors are even lower volume, having thickness of 0.08mm. The first major deployments of 0201 devices are expected to be in highly integrated package-in-package assemblies, aiming to achieve further circuit-size reductions in products such as smartphones, tablets, and IoT devices. This paper discusses board design, as well as printing, mounting, and inspection processes for assembling 0201 devices, as the next major challenge for product designers, OEMs and EMS businesses. All need to understand how these components can be adopted in surface-mount assembly processes, achieving the accuracy and repeatability needed to ensure high end of line yield for commercial viability. This calls for an evaluation of the key issues affecting the performance of printing, component mounting, and inspection processes. The presentation, configuration and materials for tape and reel, at the smaller component sizes, are still being developed. Paper tape is inefficient, in terms of parts per linear millimetre. Although 0201 parts today are usually packaged in W4P1 (4mm width, 1mm pitch) embossed tape, the narrow tape width is difficult to handle, and W4P1 feeders are expensive. A W8P0.5 specification has been proposed. 2. Board Design Developing an assembly process for any product begins with the PCB design as the foundation for the project; in particular, the pad sizes and positions, and distances to adjacent components. Previous experience shows that the relationship between the pad size and the aperture size has an important influence on paste release. When the copper is etched, the resulting pad can become slightly smaller than the designed aperture of the stencil. If this happens the paste at the edge of the aperture cannot touch the pad and instead is suspended in the gap between the pad and the stencil. As a result, the paste at the edge of the aperture may fail to release when the stencil and substrate are separated. Figure 2 shows how detachment defects can occur when the pad is slightly smaller than the aperture. Transfer rates become erratic, resulting in insufficient paste or poorly shaped deposits. To combat this, the pad design will need further work to establish suitable guidelines for pad size, spacing between pads, and distances to adjacent components. One recommendation is to oversize the pad to ensure contact. Figure 2. Adhesion to the pad near stencil edges is important to ensure proper paste release. 3. Printing For the print process to be successful, at the smallest chip-component sizes, each element needs to be reviewed and optimised. The bottom line – as always – is that is that if print results are not repeatable, defects are in-built from the start that cannot be remedied by corrections further downstream. Printing is the process that presents the most challenges, particularly in relation to mixing the smallest components with larger components in a high-volume application. There are mainly four points to consider, to establish a secure and stable printing process: (1) The seal or gasket between the stencil and PCB (2) Controlling the aperture fill (3) The release of the PCB/paste from the stencil (4) PCB support As far as paste release is concerned, strong adhesion between the solder paste and the lands on the substrate (usually exposed copper pads on FR4 PCB) is needed to overcome the friction between the solder paste and the aperture walls. This is influenced by board design, as described earlier and in section 3.3, stencil design including aperture surface finish and any low-friction treatment that may be applied (section 3.5), and the stencil/board separation speed selected at printer setup. Solder paste vendors typically recommend a constant separation speed greater than 3mm/s for best paste release and cycle time. PCB support, or tooling has a key role in the success of printing small feature sizes. The rule of thumb is that the more support, the better the results. The aluminium tooling plate remains the gold standard for support. Experience with double-sided boards containing densely spaced components has shown that grid tooling is superior to pins. However, a tooling plate may be required for substrates less than 1mm thick. Note that top clamps should be avoided, as these can adversely affect aperture filling at distances of more than 25mm from the board edge. Before discussing changes to the print and placement processes, it is important to mention the cleanliness of the machine. Excess paste accumulating in the printing machine, becoming dry and hard over time, can have obvious negative effects on the print results. As the scope for variation becomes large when dealing with small component printing, it is vital to be sure the results are not impacted by random dropped paste. 3.1 Stencil-to-PCB Seal: Controlling the Gap Maintaining adequate contact between the stencil and substrate as the squeegee passes over the stencil apertures is important. A good gasket created by proper contact between the PCB and stencil will reduce bleed-out of the paste and help lower stencil-cleaning frequency. Various types of defects may result from an excessive gap between the stencil and substrate. Before attempting to print with challenging aperture sizes, the machine calibration between the board and the stencil should be checked to make sure it is within the manufacturer’s specification. The PCB thickness should also be measured properly, not using guesswork, and measuring a random sample of the lot to ensure consistency. Improper sizing can either over-drive the PCB into the stencil, or create a gap that will produce poor results. If the aperture size is small, insufficient paste may come into contact with the pad resulting in a lack of adhesion (figure 3). In this case, paste remains in the stencil apertures instead of transferring to the substrate after separation. Figure 3. Poor adhesion can prevent paste release upon stencil separation. On the other hand, a proportion of paste can escape from stencil apertures and spread onto the substrate surface (figure 4). With the smaller apertures for 0201 size components, the process becomes more sensitive to the volume deposited and less tolerant of un-released or escaped paste. Figure 4. Paste can escape onto the substrate surface, causing defects like bridging. Vacuum clamping, after alignment and before the squeegee excursion begins, is recommended to ensure accurate positioning and maintain contact between the stencil and substrate throughout the printable area. To ensure accuracy is maintained, after vacuum is applied, the stencil frame must be sufficiently rigid. Recognising that low-cost stencil frames can lack the required rigidity, and may distort when vacuum is applied, these should be carefully considered: upgrading the stencil specification to a frame of higher quality may be necessary. Under any circumstances, small gaps are likely to occur between the substrate and stencil, and can be tolerated within certain limits. Experimentation has shown that a gap of up to 0.2mm can be tolerated, resulting in acceptable print quality. Figure 5 shows compares the volume of paste transferred to the substrate through 0.22mm x 0.24mm stencil apertures for stencil-substrate gap as large as 1.0mm, demonstrating acceptable repeatability up to about 0.2mm. Figure 5. Paste-volume repeatability is acceptable with a stencil-substrate gap of about 0.2mm. If the maximum acceptable gap is not to be exceeded, it is imperative to ensure the upper surface of the substrate and lower surface of the stencil are extremely clean. Moreover, other features that affect surface flatness – such as labels or silk-screen printing of a board-ID barcode or component-position identifiers – can significantly challenge process control. A typical silk-screen process can produce ink deposits that may be between 20µm and 100µm thick, which is enough to allow unwanted leakage of paste from apertures during printing. Elimination of silk screening for component identification is recommended. Among potential solutions, Photo-Imageable Embedded Reference Designators (PIERD® - a trademark of Tokai Shinei Electronics Corporation Limited) can create visible markings in the solder-resist layer and require no ink to be deposited on the surface of the substrate. Alternatively, new flexible stencils have been developed, such as the Taiyo Yuden ER type, Nakanuma FIT, Micron Process Lab PH, or Cube SMT Lab P-Cube Stencils. These feature a resin coating on the underside of the stencil, typically between 10µm and 30µm thick, which conforms against small surface irregularities to prevent paste escape. Another key point is to ensure the PCB solder-mask height is level with the pad height. Sunken pads, at a lower height than the mask, produce a gap that prevents contact between the board and stencil resulting in erratic print deposits. 3.2 Controlling Aperture Fill Proper filling of the stencil apertures during squeegee excursion is known to depend most strongly on paste pressure and excursion speed . Squeegee pressure has an impact on filling, but reaches a point where the effect on the paste becomes saturated and blade deflection is the result. This tends to cause scooping from larger apertures, resulting in poorer filling. Paste pressure is related to the weight of the paste roll on the surface of the stencil, and the squeegee angle. Squeegee angle has been shown to have a greater impact on the aperture fill than the conventional parameters of speed and pressure. The ability to optimise the angle between 65 degrees – typically used for low-viscosity materials – and 45 degrees used for polymer or adhesive printing enhances the ability to maximise aperture fill. Reducing the squeegee angle extends the time that the material spends over the aperture. In addition, a greater proportion of the blade surface area is in contact with the material, and so increases the impact on aperture filling. The optimal range for printing with solder paste is between 60 and 50 degrees. By reducing the squeegee angle as the paste roll size diminishes (as the paste is forced into the stencil apertures), the paste pressure can be kept more or less constant between the times at which the paste is replenished. Some printing machines have no ability to vary the squeegee angle, so the blades are normally set to 60 degrees. As the size of the apertures becomes smaller, with the introduction of 0201 chip-size components in mainstream SMT manufacturing, the ability to vary the squeegee angle – as provided by the Yamaha 3S (Swing Single Squeegee) head - delivers an advantage for process control and consistency. 3.3 Paste Release: Adhesion of Solder Paste and Lands The industry still needs to establish optimal land sizes for soldering 0201 terminations. The aperture size should be slightly less than the land size, to maximise adhesion at the areas of the land closest to the edges of the aperture and thereby ensure consistently good paste release and deposit shape. The transfer efficiency of the apertures can be determined using aspect-ratio and area-ratio formulas. The aspect ratio (aperture width ÷ stencil thickness) can show whether the stencil thickness is appropriate for the aperture width, but does not give a clear picture of the transfer efficiency. An aspect ratio of 1.5 is generally recognised as the minimum for acceptable paste release. The area ratio (bottom area ÷ lateral area) is illustrated in figure 6. This provides a better indicator of transfer efficiency. As component dimensions and solder-terminal sizes have reduced, so too has the minimum acceptable area ratio for stencil apertures. When first introduced, the minimum score was 0.66. For the latest components, an area ratio of about 0.40 is considered mandatory. Figure 6. Area ratio. [1] George Babka, Assembléon. Moving Towards a Stable Printing Process. To satisfy either of the formulas, the contact area of the pad must be greater than the total area of the aperture wall. Effectively, the stencil thickness must be reduced to ensure satisfactory paste release at smaller aperture sizes. Figure 7 describes typical stencil thicknesses for the land sizes appropriate to commonly used chip-size passives and surface-mount IC packages. Components as small as 03015 or 0201 need the stencil thickness to be in the range 40µm to 60μm. Figure 7. Appropriate stencil thickness, according to component size. Boards containing a mixture of the smallest and largest components, like connectors or discrete power components, can challenge attempts to identify a suitable, uniform stencil thickness. A thin stencil, needed to print paste for 03015 or 0201 chips, may be unable to deposit the quantity of solder required for the larger parts. Known solutions to this challenge include selective etching of the stencil, in locations where small components are used, to reduce the thickness and so improve paste release. This can be economical, and is possible to implement without needing to use a special squeegee, such as a flexible non-metallic, squeegee. On the other hand, the board design may be constrained by the fact that the squeegee cannot follow the contours of the stencil if the etched areas are small. The smallest components may need to be confined to a limited area, which may not be practicable. As an alternative, a thinner stencil of uniform thickness suitable for printing deposits for smaller components can be used, and solder preforms placed on the pads for larger components to ensure enough solder is present for satisfactory reflow. These preforms are placed using conventional mounting techniques, but add to the BOM cost for the board and can significantly extend the cycle time for the mounter. In addition, stencils below 50µm thickness can be expensive, fragile, and difficult to procure. Greater susceptibility to “coining” caused by repeated contact of the PCB and squeegees can also shorten the operating lifespan. 3.4. Sequential Printing to Cover the Full Component Range Sequential printing can offer an effective alternative. In this approach, two stencils of different thicknesses are used – one after the other – to apply paste to the same substrate. This enables two different grades of solder paste to be deposited, and gives extra freedom to position small components anywhere on the board, without recourse to placing preforms on pads that require a larger volume of paste. A dual-lane printer with a sequential printing mode, such as the Yamaha YSP20, is needed. Figure 8 shows the results of sequential printing, using separate stencils for 1608 and 03015 components respectively. Sequential printing also provides the opportunity to reduce the cost of solder paste deposited on the board, by using the more expensive type 5.5 or 6 paste for printing fine features only. A coarser particle size can be used for depositing larger volumes of paste. Figure 8. Sequential printing using stencils of different thickness allows the print process to handle a large difference between the solder volume required for ultra-small components and that needed for larger devices. 3.5 Stencil Treatments for Improved Paste Release The surface roughness of the aperture walls is known to be an important factor influencing paste release. A low-friction surface is desirable, but applying extra polishing or coating processes to the stencil at manufacture adds to cost. Laser-cut stencils can be subjected to electrolytic polishing, which is more effective than physical polishing, in terms of its effect on the inner surfaces of the apertures. Physical polishing is effective in removing burrs from the aperture edges, which can aid sealing at the stencil-substrate join, but has little if any effect on surface finish inside the aperture. Electrolytic polishing ensures a smoother surface, and a further water-repellent silicone-based coating process can be applied to ensure the lowest possible friction. Alternatively, additive (electro-formed) stencils are known to benefit from aperture walls that have inherently lower surface friction than laser-cut apertures. Bearing in mind that the reduced stencil thickness needed to print deposits for 0201 components has the effect of lowering demands on the additive process – in terms of material deposited and time to complete the process - the cost premium for electro-forming can be lower compared to a laser-cut stencil. However, additive stencils can display variable stencil thickness, across the surface of the board, with inaccuracy and encroachment of the aperture size, during the additive process. Image stretch introducing during the photoresist phase can also be an issue. On the other hand, the accuracy of laser-cutting processes, combined with today’s high-quality fine-grain steels that produce smooth aperture walls, ensure laser-cut stencils remain a popular, effective and economical choice. 3.6. Experimental Study of Aperture Size, Stencil Properties and Solder Paste Yamaha has analysed printing processes for 0201 components, comparing performance with various aperture sizes, solder paste types, and stencil manufacturing techniques. The experimental conditions are as follows: Solder pastes: ① Senju Metal Industry M705-RGS800 Type 5 (average particle size 20μm) ② Senju Metal Industry M705-RGS800 Type 5.5 (average particle size 15μm) ③ Senju Metal Industry M705-RGS800 Type 6 (average particle size 10μm) Stencils (each thickness 50µm): ① Sonocom laser + electrolytic polished ② Sonocom laser + electrolytic polished + liquid-repellent coating ③ Sonocom additive + liquid-repellent coating Printer setup: Model: YSP with 3S squeegee Stencil detach speed: 3mm/sec Squeegee angle: 55°, Squeegee speed: 50mm/sec Squeegee pressure: 60N Solder print inspection: Model: YSi-SP high-resolution type (5/10μm) (measure solder volume fraction with 10 consecutive sheets) Figure 9. Process capability comparison for aperture sizes, solder paste types and stencil properties. Figure 9 shows the calculated process capability for each combination of aperture size, solder paste and stencil type. Several conclusions can be drawn: • Laser-cut and electro-polished stencils with water-repellent coating are able to support 0201 processes, and can deliver results superior to the additive-formed stencil • The water-repellent coating significantly improves the laser-cut stencil performance • Type 5.5 solder paste can deliver comparable results to more expensive type 6 pastes. Type 5 paste shows inferior performance A Note on Solder-Paste Particle Size The successive reductions in SMD chip-component sizes, and the effects on aperture designs, have pushed paste requirements towards finer particle sizes (table 2). Table 2. Standard paste types and suitable applications. The transition from Type 3 paste, with 35µm typical particle size, to 30µm Type 4 pastes was driven not only by the promise of greater end of line yield but also by reductions in the cost of Type-4 pastes due to rising demand. A similar transition is occurring in the present timeframe, as the cost of Type-5 pastes is becoming lower with increasing adoption in high-volume manufacturing processes. The arrival of 0201 on factory floors is pushing the requirement to Type-6. The current high price of Type-6 pastes reflects today’s low-volume applications for 0201 components in semiconductor and specialised applications. Whereas the Type-5 powder costs about 40% compared to Type-4, the material cost for Type-6 pastes can almost triple. This is of concern to high-volume manufacturers. Looking at the average particle sizes from Type-3 to Type-7, in Table 1, there is a significant difference between Type-5 and Type-6, where the ball size is reduced by half from 20µm to 10µm. Noting that paste suppliers have offset the premium for Type-5 pastes through a blend of powder sizes that create a Type-4.5, the opportunity exists to create a Type-5.5 with average particle size of 15µm. This could address the cost concerns, and may also reduce the risks associated with oxidation of the smaller particles and challenges associated with reflow. The experimental study compared results for Type-5, Type-5.54 and Type-6 pastes to assess the impact of particle size on process performance. 4. Optimising the Mounting Process for 0201 Components Assembling ultra-small components down to 0201 size (and even smaller in the future), also challenges aspects of the mounting process. Accurate component pickup holds the key to satisfactory placement, and is dependent on correct alignment of the nozzle and feeder, as well as correct pickup height. When picking up small chip resistors or capacitors, there is minimal tolerance for any offset between the centre of the component and the centre of the nozzle. In addition to errors in feeder and nozzle position, other factors such as temperature difference also have increasing influence over the placement accuracy of smaller components. Automatic correction, using a system such as Yamaha’s Multiple Accuracy Compensation System (MACS) compensates for all sources of error in the machine’s mechanisms. MACS helps to ensure component pickup at the nozzle centre by identifying the centre of the component as it is presented in the feeder tape, and by recognising the image of the nozzle tip to automatically correct for deviation from the theoretical centre. MACS has been shown to improve accuracy by a factor of three, reducing positional errors to less than 10µm (3 sigma). Automatic pickup height teaching is also critical, both to prevent damage to the small and delicate components, and to prevent mis-orientation of the component after applying the positional corrections calculated by MACS. Figure 10 illustrates aspects of the mounting process that can affect placement accuracy, and the elements that are addressed using auto position compensation and pickup-height teach. Figure 10. Automatic calculation of pickup height and nozzle position, with accuracy compensation. A note on Nozzle Maintenance The appropriate nozzle for picking up 0201 components has a pore size of 0.1mm. This extremely small pore size is more vulnerable to blocking by tiny particles than larger nozzles such as those used for 0603 or larger components. Cleanliness, therefore, is of the essence, and frequent nozzle cleaning is recommended. Automatic cleaning of all nozzles simultaneously, using a cleaner such as the SAWA Nozzle Cleaning Unit with built-in ultrasonic cleaning, can be effective and efficient. After cleaning, the entire bank of nozzles is reinstalled and aligned in a single operation. 5. Inspection Commonly used inline automatic optical inspection (AOI) systems tend to contain a 5-Mpixel sensor and cover a field of view that gives image resolution of about 19 μm. When inspecting 0201-size components, this is not sufficient to provide a crisp, clear image that can be analysed easily and accurately. To increase the resolution, the field of view must be reduced if the 5-Mpixel sensor is to be retained. One drawback is that extra images must be captured to cover the entire board, resulting in longer cycle times. On the other hand, more advanced cameras with 12.58Mpixels are now available. These can allow high-speed, high-precision inspection with selectable resolution of 12μm or 7μm, and a large field of view. The advantages of using the latest high-resolution cameras can be additionally boosted by also applying multi-dimensional and multi-angle inspection. Yamaha’s YSi-V series is capable of 3D and 2D visual inspection, at each of four different angles and in red, blue and green wavelengths, to give a multi-direction view of each component. In addition, there is laser checking for coplanarity and component-height. Users can select from various imaging and detection methods, depending on the requirements of each individual application. Conclusion The latest ultra-small components are here to stay, and make printing and placement even tougher. Manufacturers must respond by understanding the most effective techniques and equipment to solve the challenges and using these to perfect new processes. Superior control over squeegee angle, stencil thickness, alignment of mounter feeders and nozzles, pickup height, and versatile inspection modes including multi-angle, multi-wavelength, and high-resolution cameras support the advanced capabilities needed. Stencil characteristics, including rigidness of the frame, electrolytic polishing, aperture coatings, and conformable stencils that compensate for the effects of silk screening on the substrate, are also more critical. The findings presented in this paper can help all manufacturing businesses to achieve satisfactory process capability with minor changes to equipment and materials. To speak to a Yamaha technical specialist about developing processes for the 0201 generation and beyond, please call your local sales office, email, or see the website. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCMR200 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 5. April 2018
    Yamaha Motor: First Exhibition at HANNOVER MESSE 2018, World’s Leading Trade Fair for Industrial Technology, Delivering Overall Optimization of Fully-Digitalized Production Facilities through Robot Transport
    IWATA, April 05, 2018—Yamaha Motor Co., Ltd. (Tokyo:7272) announced today that it will exhibit for the first time at the HANNOVER MESSE 2018, a B to B industrial technology trade show to be held in Hannover, Germany, from Monday, April 23 to Friday, April 27, 2018. Based on the theme of “Fully-Digitalized Production through Robot Transport,” the Yamaha Motor booth will showcase the overall construction of Fully-Digitalized Production lines, including transport processes. The HANNOVER MESSE is the world’s leading industrial trade fair, at which leading-edge industrial technology and products are gathered in one place. (The 2017 event saw exhibits held by approx. 5,000 companies attracting around 220,000 visitors). The Yamaha Motor booth at the HANNOVER MESSE will feature the Advanced Robotics Automation Platform, as well as an operation demonstration of the Platform and the YK400XR SCARA robot, showcasing the high-speed capability and precision of Yamaha robotics technology to a broad cross-section of the European market. Overview of HANNOVER MESSE 2018http://www.hannovermesse.de/home Event Period : April 23 to 27, 2018   Venue : Hannover Exhibition Grounds, Germany   No. of Exhibitors : Approximately 5,000*   No. of Attendees : Around 220,000 people* *Previous event (2017)   Yamaha Motor Exhibit Outline Exhibit Space : Hall17, B06   Details : ◎Exhibition and demonstrationsAdvanced Robotics Automation PlatformYK400XR   Contact info Oumayma Grad Marketing Communications Manager Hansemannstraße 12 41468 Neuss Germany Office: +49 2131 2013 538 Mobile: +49 1517 0233 297 Fax: +49 2131 2013 550 Email: oumayma.grad@yamaha-motor.de Web: www.yamaha-motor-im.eu Models to be Exhibited by Yamaha Motor Advanced Robotics Automation Platform This new robotics system enables automation of complex advanced production facilities rapidly and at low cost. The system enables integrated control in one unit of the multiple robots and peripheral devices necessary for production facilities, reducing wasted time through the full digitalization of facilities. ARAP Product Website:https://www.yamaha-motor.co.jp/robot/platform/en/ Explanatory video:https://youtu.be/r_x_WSFj4rc YK400XR This SCARA robot features both high quality/functionality and excellent cost-performance. These robots deliver outstanding high rigidity, high-speed capability, and high-accuracy capability. They are utilized across a wide range of production processes, from production facilities for electrical/electronic components and compact precision machinery parts requiring precision assembly, through to transfer and transport in large automotive component assembly. YK400XR Product Website:https://global.yamaha-motor.com/business/robot/lineup/ykxg/ Applications:https://global.yamaha-motor.com/business/robot/lineup/application/ykxg/ Introduction of Features:https://global.yamaha-motor.com/business/robot/lineup/ykxg/small/yk400xr/ Demonstration video:https://youtu.be/5b7JbiONZvY Industrial Robot Market Overview Driven by rising wages and increased quality requirements in China and emerging markets, as well as the decreasing working-age population in Japan and Europe, the global robot market has followed a growth trend, which is expected to continue. The average annual growth rate for the 2017 to 2024 period is forecast to grow at 4.2% on a monetary basis, and at 10.2% on a unit basis, with market expansion expected to continue in the future. History of Yamaha Motor Industrial Robots 1974 : Yamaha Motor begins research and development into industrial robots in order to streamline production and increase machining precision in its own motorcycle factories 1976 : SCARA robots introduced to Yamaha Motor motorcycle production lines 1981 : Industrial Robots business established. External sales begin 1984 : IM Business Unit established (Yamaha Motor Hamakita Plant) / SCARA robot sales begin overseas 1991   IM Technology Center completion (Sodecho, Hamamatsu city, Shizuoka Prefecture) 2006   IM Technology Center and factory expansion 2013 : China (Suzhou City) sales office establishedLinear conveyor module LCM100 launched 2016 : Advanced Robotics Automation Platform integrated controller (PLC) launched 2017 : New Robotics Business building begins operation Yamaha Motor’s lineup of industrial robots ranging from industrial robots to controllers, which powerfully support the automation of production sites, is rich in variation. YMC builds on these strengths to pursue greater efficiency and quality in increasingly complex, diverse, and high-speed production sites. About YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM100 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Hamamatsu, Yamaha FA Section serves customers globally through its worldwide sales network spanning China, Taiwan, Korea, south Asia, north America, Australia/New Zealand, and Europe. www.yamaha-motor-im.eu