NEWS MITTEILUNGEN

  • 24. November 2022
    RCX-Studio 2020 (Support-Software für Controller der Serie RCX3)
    In RCX-Studio 2020, der Support-Software für Steuerungen der Serie RCX3, hat Yamaha Motor die 3D-Simulatorfunktion, die bisher nur für SCARA-Roboter ...
  • 14. November 2022
    Lebensmittelhersteller steigern Produktion mithilfe von Yamaha-Robotern
    Automating any processes in a production sequence can simplify operational challenges as well as increasing efficiency and quality. Yamaha Motor Robotics ...
  • 17. Oktober 2022
    Yamaha zeigt auf der Motek 2022 kreative Automatisierungslösungen mit kostengünstigen Robotern
    Die Yamaha Motor Robotics FA Section wird den Besuchern der Motek 2022 zeigen, wie ihre Familie kompakter, kostengünstiger Industrieroboter die Produktivität gängiger Prozesse zur Handhabung von Bauteilen und zur Produktmontage erhöht.
  • 19. September 2022
    Auslegung von Transportsystemen für optimale Flexibilität und kontinuierliche Verbesserung
    Die Yamaha Motor Robotics FA Section wird den Besuchern der Motek 2022 zeigen, wie ihre Familie kompakter, kostengünstiger Industrieroboter die Produktivität gängiger Prozesse zur Handhabung von Bauteilen und zur Produktmontage erhöht.
  • 18. Juli 2022
    Yamaha präsentiert auf der Motek 2022 seine neuesten Roboter für fortschrittliche Automatisierung
    Die Yamaha Motor Robotics FA Section wird den Besuchern der Motek 2022 zeigen, wie ihre Familie kompakter, kostengünstiger Industrieroboter die Produktivität gängiger Prozesse zur Handhabung von Bauteilen und zur Produktmontage erhöht.
  • 4. Juli 2022
    Yamaha zeigt auf der Automatica 2022 kostengünstige, flexible Automatisierung für neue industrielle Herausforderungen
    Die Yamaha Motor Robotics FA Section hat vorgeführt, wie erschwingliche Roboter Prozesse in verschiedenen Branchen verändern können. Auf der Automatica 2022, die vom 21. bis 24. Juni in München stattfand, wurden den Besuchern zahlreiche Live-Vorführungen präsentiert.
  • 14. April 2022
    Automatisierung der Batterieproduktion für sichere und bezahlbare Energie
    Batteries are to have a central role in the future of sustainable energy and mobility. Affordable, high-quality lithium battery packs are needed in diverse kWh ratings to power vehicles ranging from eBikes, drones, and small city cars, to large electric vehicles (EVs), trucks and buses.
  • 4. April 2022
    Yamaha demonstriert auf der Automatica 2022 die Stärke von Roboter-Teamwork
    Die Yamaha Motor Robotics FA Section wird auf der Automatica 2022 in München vom 21. bis 24. Juni an ihrem Stand Nr. 314 in Halle B5 Industrieroboter vorführen, die autonom zusammenarbeiten, um Produktivität zu steigern und Abfall zu reduzieren.
  • 17. März 2022
    Yamaha Motor unterstützt die Ukraine und ihre Nachbarregionen mit humanitärer Hilfe
    Die Yamaha Motor Co., Ltd. gab heute ihre Entscheidung bekannt, 700.000 US-Dollar für humanitäre Hilfe in der Ukraine und den umliegenden Regionen zu spenden. Diese Spende wird über Japan Platform, eine gemeinnützige Organisation, abgewickelt. Die Mittel werden ausdrücklich für die Bereitstellung humanitärer Hilfe an Bedürftige verwendet. Yamaha Motor drückt allen von dieser Krise betroffenen Opfern sein tiefes Mitgefühl aus und hofft, dass so schnell wie möglich wieder Frieden einkehrt.
  • 28. Februar 2022
    Auswahl und Einsatz von Einachs-Robotern
    An industrial robot can be as simple as a single-axis robot for basic transport and position, or can be scaled up to multiple axes working in concert. The latest single-axis models bring together advanced design features and software tools to enhance accuracy, speed, and ease of use Industrial robots are known to boost productivity. Moreover, and since the pandemic, it is clear they can safeguard workers’ health by reducing staffing on the factory floor and reducing human contact with components and assemblies. Among the various types of robots that are available, single-axis robots are easy to understand and use. They are already automating a wide variety of tasks in factories and logistics hubs; sometimes operating in isolation, often configured in groups co-ordinated by a central controller. Always, they bring greater throughput, repeatability, and consistency to operations. System integrators can develop systems based on single-axis robots in one, two, or three axes to tackle handling and assembly challenges. These can include transferring bulk items into individual trays or pallets, sequences such as feeding and cutting, and positioning jigs and tools. On the other hand, two or more linear units can work together to perform tasks that demand high accuracy like laser cutting, painting, or dispensing. A custom cartesian robot can be built by combining single-axis robots specially selected for each axis (figure 1). Yamaha also has a range of standard cartesian robots, available off the shelf. Figure 1. Single-axis robots can be configured as a custom cartesian robot. A linear unit can also act in concert with a cartesian robot, connected to the same controller, in situations that require more axes. A controller such as the Yamaha RCX340 is usually chosen to manage the cartesian robot. It has the capacity to control one or more additional single-axis robots working as part of the same unified, coordinated system. This lets integrators configure robots to handle complex sequences, with the flexibility to expand the system if needed. Visit https://global.yamaha-motor.com/business/robot/lineup/application/ to see single-axis and cartesian robots in action, performing a variety of common industrial tasks. What to Look For Rigidity is one of the most important properties of a single-axis robot, needed to ensure precise and repeatable positioning and allow the slider to move freely with minimal friction. The design of associated mountings and supports can also be simplified, saving both space and cost. On the other hand, compact dimensions are also desired to minimise the factory area occupied by the robot. Using advanced design techniques, it is possible to achieve a reduction in size at the same time as increasing rigidity in every axis. The latest high-rigidity single-axis robots in Yamaha’s Robonity series feature one-piece construction and a built-in linear guide. These enhancements have increased the rigidity by up to 300% while at the same time reducing the rail width. The ABAR05 (figure 2) is just 54mm wide, a saving of 17% compared to typical alternative models. No external guide is required, which simplifies design, and the increased rigidity preserves the robot’s straight-line performance when subjected to a radial load. The play in the direction of rotation is inhibited and tools attached to the tip of the rod achieve ±0° of non-rotating accuracy. The robots are available with stroke length up to 1100mm Figure 2. ABAR05 high-rigidity single-axis robot. The latest design enhancements have also allowed the overall height to be reduced. A major advantage of these new, slimmer robots is that the centre of gravity is lowered, which enhances performance when used as the x-axis of a custom-built cartesian robot. The ABAS12 is 76mm high and 120mm wide. In addition, the latest design maximises the movement stroke in relation to the total length. Together, the reduced length, width, and height, with increased rigidity, and comparable range of movement compared to alternative models, all contribute to enabling a significant downsizing of facility equipment. There are further space savings to be gained in the design of the control panel. The EP-01 controller for Robonity robots is 37% narrower than alternative modules, at 40mm wide. Selecting the Right Model When selecting a single-axis robot, the type of motor should also be considered. Yamaha’s Robonity series contains robots with a ground ball screw designed for use with a servo motor. The range contains complete units capable of speeds up to 2400mm/s. There are also motorless actuators that are compatible with industry-standard motors up to 400 Watts. Attachment kits are available that allow changing the motor orientation to suit the requirements of the application. Alternatively, stepper motor robots such as the Transervo series can provide a cost-effective solution with the functionality of a servo motor for applications that require lower payload and ultimate speed is not a concern. The latest models can handle almost four times the payload of their predecessors, and the excursion speed of 1200mm/s is 20% faster. On the other hand, a linear-motor single-axis robot could be the most cost-effective solution for an application that demands transporting lightweight workpieces over long distances at high speeds. Robots are available with maximum stroke greater than four metres and maximum speed of 2500mm/s, with ±5µm repeated position accuracy. The overall cycle time saving can be significant, while linear motors are also quiet and suffer minimal wear. Typical payload capacity is a few kilograms. Phaser MF linear-motor robots fitted with flux magnets can transport objects up to 160kg at high speeds. Simulation and Setup When evaluating single-axis robots for an application involving one or more units, the supporting tools to enable setup and troubleshooting should also be considered. Yamaha’s web-based simulator helps select the optimum specification. Users can quickly calculate important criteria like the projected cycle time and ball screw lifetime after describing a few basic parameters (figure 3). Figure 3. A simple simulation can predict the robot’s operating lifetime. When setting up the system, the EP-01 robot controller works with the EP Manager PC application to assist with analysis and fine-tuning. Users can enter extensive details of the usage conditions, including transport mass, point data, and operation type. This makes it possible to assess the performance in a virtual environment without running real hardware. simulation provides comprehensive results including the total operating time, time for individual operations, maximum speed, and acceleration. When setting up and running the robot system on the factory floor, EP Manager gives important information like real-time tracing of actual speed, motor load status, and the time to reach specific positions. Continuous monitoring is possible to verify the setup and enable long-term analysis and troubleshooting assistance. The tool also provides real-time tracing and allows checking of the alarm history, which supports maintainability. The alarm history check helps analyse errors by giving insight into parameters including position, speed, operating conditions, current value, voltage, and I/O status. Analysing these various states can help identify the root cause of the alarm. In addition, real-time tracing allows users to analyse status up to the point an error occurred, to help identify causes such as overloading of the motor. The EP-01 controller generates a feedback pulse output on a dedicated channel separate from the standard network connection. This helps with analysis and monitoring by providing continuous up-to-date position information that is independent of any communication delays on the network. By providing real-time output of the robot’s current position, the feedback pulse also enables speed ripple compensation. Special Options Special design features of the Robonity single-axis series include access to fixing points that allow each unit to be installed quickly and easily from either top or bottom without removing any exterior parts. For applications that demand the shortest possible cycle time, Robonity AGXS models can accelerate/decelerate at up to 2g compared to conventional units that have a typical maximum of 0.5g. The AGXS (figure 4) is an advanced series that features ground ball screws for high accuracy and durability. Figure 4. Robonity AGXS10 high-precision single-axis robot. AGXS robots come ready for use in clean areas such as food preparation and production of cosmetics or pharmaceuticals. They feature stainless dust-proof covers and their low-friction rollers minimise grinding that generates dust and particles. A suction port is provided to safely remove any foreign matter from the mechanisms. Conclusion Single-axis robots provide an effective foundation to integrate robots in automated processes. Advantages include easy selection, design, and use. Key selection criteria include high rigidity, compact dimensions, and servo, stepper, or linear motor drive for optimum acceleration and speed. Effective tools for simulation and analysis can provide an important differentiating factor that significantly ease setup and long-term maintenance. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCMR200 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 23. Februar 2022
    Erweiterung und Renovierung des Büros von Yamaha Motor Robotics in Hamamatsu zur Erhöhung der Kapazität
    Toward expanding business scale and strengthening profitability using strategic investment in growing businesses Yamaha Motor Europe Robotics announced today that the company will expand and renovate the office buildings that were built in the Toyooka-cho area in Kita-ku,Hamamatsu City, Shizuoka Prefecture at the end of 2016. The initiative is set to expand the production capacity of the Hamamatsu Robotics Office, which develops, manufactures, and sells surface mounters and industrial robots. Construction is scheduled to begin in January 2023, with all work to be completed by June 2024. Hamamatsu Robotics Office impression (after initiative) As a result of this expansion and renovation, the total floor area of the office buildings will be approximately 1.6 times the current level to approximately 82,000m2, the production area will be expanded by 1.8 times, and the production capacity of surface mounters will be doubled. By expanding the development area, and improving the environment for evaluation and laboratories, the initiative is also intended to promote steadier product development. In addition, the company envisions the realization of next-generation offices through the installation of smart showrooms and carbon neutrality support. The project is expected to strengthen manufacturing, sales, technology, and service systems in the new environment.The strengthening of the base through this expansion and renovation is part of the company's strategic investment in growing businesses under its new medium-term management plan (2022-2024). Yamaha Motor will further enhance its customer-oriented systems for technology, sales, and services, which is the strength of its robotics business, and work towards reinforcing profitability by expanding the scale and business area in a growing market.   Hamamatsu Robotics Office Address 127 Toyooka-cho, Kita-ku, Hamamatsu-shi, Shizuoka Total Floor Area 52,317m²(current) ⇒82,042m²(after extension) Number of Employees   1,800 approx. (as of January 2022) *Including non-regular employees Business Overview Development, production and sales of surface mounting systems, industrial robots, and semiconductor manufacturing equipment ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCMR200 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 21. Februar 2022
    Yamaha präsentiert neue Initiativen zur Unterstützung des Vertriebsnetzes für die Factory-Automation
    Die Yamaha Motor Robotics Factory Automation Section hat ihr jährliches Distributorentreffen 2022 online abgehalten.
  • 10. Januar 2022
    Yamaha Motor erweitert Robonity-Serie um Linearaktuatoren LBAR und ABAR
    Linearschlitten-Modelle um schlanke Ausführungen LBAS12 und ABAS12 erweitert
  • 18. Oktober 2021
    Yamaha zeigte modernste, erschwingliche Robotertechnologien auf der Motek 2021
    Rückkehr zum persönlichen Kontakt: innovative, perfekt zugängliche Roboter, schnelle und effiziente Bildverarbeitung und flexible Hochgeschwindigkeitslösungen für den Werkstücktransport für eine sauberere und sicherere Montage-Industrie
  • 11. Oktober 2021
    SCARA-Roboter für künftige Herausforderungen in der Fertigung bestens aufgestellt
    Erschwingliche SCARA-Roboter können Unternehmen dabei helfen, eine Vielzahl von Herausforderungen zu bewältigen und bieten mit jeder neuen Generation zusätzliche Flexibilität, höhere Leistung und größere Benutzerfreundlichkeit.
  • 29. September 2021
    Yamaha ernennt Growskills Robotics zum Distributor für sein Automatisierungsportfolio in Portugal
    Yamaha Robotics Factory Automation section has appointed Growskills Robotics as its distributor in Portugal. The move strengthens support for enterprises seeking to modernise their processes using the Company’s portfolio of robots for light industrial applications. “With experience in education and training, as well as sales and support, Growskills Robotics can show the market how our technologies transform key metrics like quality, delivery, and productivity,” said Jumpei Ninomiya, Yamaha FA Sales Manager for Europe. “Together, we can help customers automate and improve the performance of numerous processes that involve component picking, placement, packaging, and light mechanical assembly.”   Growskills in Matosinhos “We are looking forward to a successful and rewarding collaboration with Yamaha, using flexible, affordable robots to overcome the challenges that face manufacturing and logistics companies,” said António Fernandes, General Manager, Growskills Robotics. “The Yamaha portfolio addresses inline and standalone applications, and enables end-to-end automated solutions that are fast, reliable, and scalable.” The Yamaha portfolio includes SCARA and cartesian, multi-axis robot arms, and single-axis robots, featured for use in environments from small factories and workshops to laboratory cleanrooms. There is a wide selection of SCARA robots, including the competitively-priced YK-XE series that offers arm-length options up to 710mm and load capacity from 4kg to 10kg. In addition, Yamaha’s LCMR200 programmable high-speed linear conveyor modules handle workpiece transport and are quieter and more flexible than conventional belt-and-roller conveyors. The RCXiVY2+ system simplifies adding vision capabilities and connects directly with the RCX340 robot controller for efficient performance with minimal latency.   ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCMR200 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 23. August 2021
    Yamaha präsentiert auf der Motek 2021 die neuesten Roboter für die industrielle Automatisierung
    Yamaha Motor Europe FA Section wird auf der Motek 2021, der Messe für industrielle Automatisierung, die vom 5. bis 8. Oktober in Stuttgart stattfindet, flexible und kostengünstige Roboterlösungen präsentieren.
  • 14. Juni 2021
    Yamaha ernennt S.D.A. zur Vertretung für Industrieroboter für die Slowakei und die Tschechische Republik
    Yamaha Motor Europe Factory Automation Section hat eine Vertriebsvereinbarung mit der in der Slowakei ansässigen S.D.A. s.r.o. bekannt gegeben, um den Vertrieb und den Kundensupport für Yamaha-Industrieroboter in der Slowakei und der Tschechischen Republik zu erweitern. S.D.A (Sensors. Drives. Automation) verfügt über ein reichhaltiges Fachwissen und ein umfangreiches Portfolio an zugehörigen Produkten führender Anbieter, die die Belieferung mit hochleistungsfähiger, flexibler Automatisierungstechnik erleichtern. Das Hauptbüro für Vertrieb und Technik in Banská Bystrica in der Zentralslowakei ist optimal gelegen, um Unternehmen in der gesamten Region zu bedienen.
  • 8. Juni 2021
    Yamaha rüstet sich für die Automatica Sprint 2021
    Yamaha Motor Robotics FA Section präsentiert auf der automatica sprint 2021 vom 22. bis 24. Juni sein Industrieroboter-Portfolio und zeigt die durchgängige Automatisierung komplexer Prozesse für maximale Produktivität
  • 10. Mai 2021
    Vier Herausforderungen in der Montage, die flexibles Materialhandling erfordern
    Success in manufacturing is a moving target. Planners routinely face demands to reduce cycle time, increase capacity, introduce new products more quickly, and utilise available floorspace efficiently. The methods employed to move workpieces between the various production processes can significantly influence the extent to which these goals are achieved. 1.Scale Production When Factory Floorspace is Full Sometimes, rotary indexing tables are used to move workpieces from one machine to the next, quickly, to perform a sequence of assembly processes. When designing and setting up an assembly sequence to be performed using indexing tables, process engineers must consider critical indexing table parameters such as resolution, repeatability, accuracy, and allowable backlash and hysteresis. If throughput needs to be increased, it may be possible simply to increase the rotational speed as the table moves between index positions. If an extra machine needs to be added to the sequence, installed either around the perimeter of the table or in the centre, this can be a complex task. Equipment currently in place must usually be moved to a new position to accommodate the extra machine. Scalability is limited, however, by the circumference of the table. Adding an extra machine may be physically impossible. When the limits of speed and table size have been reached, the only alternative may be to add an extra indexing table. This can demand significant extra space, which may not be available. 2. Find More Ways to Cut Line Cycle Time When moving workpieces from process to process along a production line, conventional belt-and-roller conveyors are often the transport of choice. These are equally suited to carrying workpieces between automated machinery or hand-assembly stations (figure 1). Figure 1. Manual or automated assembly processes depend on fast, efficient workpiece transport. Typically the conveyor speed is fixed and movement is unidirectional. To cut the cycle time and thus raise production line throughput, the obvious course of action may be simply to increase the conveyor speed. This is not always successful and, in fact, can be counterproductive in some situations. The issue comes when stopping the moving workpieces, which is typically done with a mechanism such as a micro-switch or end stop that brings the conveyor to an abrupt stop. Some companies have found that workpieces have become displaced and carrier trays or pallets damaged. Stopping work to remedy these issues reduces productivity. 3. Save Cost and Space with Process Sharing When working out how to automate the assembly of a new product, some processes – such as driving screws, applying adhesive, or installing a multi-part bezel – may need to be performed more than once on the same workpiece. To complete the processes in a traditional unidirectional sequence, the same type of machine would need to be installed at several places along the assembly line. Both space and capital budget could be saved if a workpiece could be returned to, say, a screwdriving machine to install a second set of screws immediately after a process that positions an outer cover or enclosure. However, moving workpieces backwards along the production line to achieve this is not easy to arrange using conventional conveyors. 4. Streamline Workpiece Handling Another aspect of the traditional conveyor that can slow production and hinder attempts to increase productivity is the fact that workpieces must usually be removed from the belt and placed in a holder such as a tray, chuck, or vice before any process can be performed. This could be done by hand or by an automated pick-and-place mechanism. The workpiece must subsequently be returned to the conveyor to move to the next process. Arranging this sequence of pick, place, and replace actions adds to the cost of process automation as well as the line cycle time. One advantage of indexing tables is that this is usually not necessary. However, indexing tables can be subject to the limitations already described. Scale Production with Linear Modules Linear conveyor modules such as Yamaha’s state-of-the-art LCMR200 units (figure 2) enable workpiece transport to become an active aspect of the assembly sequence. Compared to conventional conveyors, these modules allow higher transit speeds and smoother, faster acceleration and deceleration, as well as greater positioning accuracy, finer tolerances, and increased rigidity. Figure 2. Linear conveyor module for workpiece transport features independently controlled sliders. High precision and flexibility allow linear conveyor modules to present an alternative to rotary index tables that enable production to be scaled more quickly and easily. Yamaha recently helped a product manufacturer to simultaneously increase production capacity and accelerate new-product introduction using linear conveyor modules. The production team knew they could not achieve these targets with the rotary indexing tables the company had used before. The company’s technicians found that linear conveyor modules allowed for the number of processes involved in a production sequence to be increased more easily than indexing tables typically allow, by adding extra modules. On the other hand, the team was also able to utilise the available factory floorspace more efficiently. In addition, they were able to define the workpiece stop positions accurately, and fine-tune the positions easily by reprogramming the conveyor modules. The module sliders are individually controlled by the Yamaha YHX universal controller, which has 64 output channels. Using the linear modules, this company was able to setup its new production facility, incorporating additional processes as part of a more complex assembly sequence, in about half the time needed to reorganise a simple sequence performed on an indexing table. Accelerate Cycle Time For companies seeking to improve cycle time, the smooth servo-controlled acceleration and deceleration, higher maximum speed, and repeatability allow workpieces to be delivered more quickly to the desired positi Yamaha’s linear conveyor modules have enabled manufacturers building high-value products such as smartphone handsets to cut cycle time in response to customer demands and increase efficiency by eliminating line stoppages to fix problems such as broken pallets and displaced workpieces. Introducing new products, or reconfiguring and scaling the line to build new products and increase capacity, has also become faster. The modular design allows the line layout to be changed quickly and easily and all slider stop positions can be reprogrammed as needed. LCMR200 modules are available in various standard lengths from 200mm to 1000mm and the slider speed is adjustable up to a maximum of 2500mm per second, for payloads below 10kg. The maximum acceleration is 1.3g, equivalent to a 0-100kph time under 2.2 seconds, giving great scope to reduce the time for workpieces to move between processes when seeking to reduce cycle time. Leverage Flexibility for Process Sharing Moreover, by enabling bidirectional movement, linear conveyor modules give the flexibility to move workpieces forwards as well as backwards between processes in the line. This creates the opportunity to handle duplicated processes using a single workstation - such as the two-stage screwdriving case, mentioned earlier - without interfering with other inline equipment upstream or downstream (figure 3). The capital cost and footprint of the line can thus be optimised to suit the available budget and factory floorspace. Figure 3. Sliders can move in either direction between workstations to save duplication. The YHX controller centralises control of the conveyor sliders and other factory automation devices such as SCARA and cartesian robots and their peripherals, and so enables users to setup a complete automated assembly cell quickly and easily. The YHX Studio tool simplifies programming with ladder graphics or text entry, helping to visualize the cell as a complete entity and so optimise all interactions between robots and conveyor sliders. Cut Transfer Times by 50% Linear conveyor modules like Yamaha’s LCMR200 series are built with high-rigidity guides that provide the stability needed for assembly processes to be performed directly on the carriage without removing the workpiece from the module (figure 4). Figure 4. Linear conveyor modules allow working directly on sliders and integrate easily with industrial robots. The circulation unit at the line end enhances flexibility to optimise the layout. The LCMR200 provides accurate and repeatable control of the workpiece position and the covered design prevents foreign objects such as process waste entering the module. Performing processes while parts are on the carriage saves the time to design automated equipment for unloading and reloading workpieces from the conveyor, as well as the cost of the equipment and factory floorspace. The impact on cycle time, as workpieces are unloaded for processing and subsequently transferred back onto the conveyor, is also eliminated. Conclusion Saving space, cutting cycle time, enabling process sharing, and eliminating avoidable picking and replacement of workpieces are four ways linear conveyor modules can help to increase manufacturing productivity. In addition, independent slider control with programmable parameters such as stop positions and speed promote flexibility and scalability to meet changing market demands and accelerate new-product introduction. Linear conveyor modules are also an ideal companion to industrial robots, permitting centralised control for ease of use and efficiency. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCMR200 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 26. April 2021
    Yamaha Motor setzt Gewinnserie bei iF-Design- und Red Dot-Design-Awards fort
    First design accolades ever for a Yamaha industrial robot Yamaha Motor Europe announced today that the company’s LCMR200 industrial robot (linear conveyor module for transfer systems) and the TRICITY 300 commuter model have both won Germany’s internationally prestigious iF Design Award and Red Dot Award: Product Design 2021. This marks the eighth consecutive year the company has won an iF Design Award and the tenth straight year winning a Red Dot Award. It is also the first time a Yamaha Motor industrial robot has received either of these. The LCMR200 is a linear conveyor using a modular construction and consists of a linear motor that delivers high-speed, high-precision movements and a slider for loading and transferring work pieces. The sliders can all move independently, and because assembly work can be performed on the slider itself and the work then transferred as-is, the LCMR200 greatly improves space efficiency and achieves high productivity. It also yields greater freedom for line construction and enables fast production changes. The motor driver is built into the thin, single-piece module body made of anodized aluminum, which beautifully harmonizes with surrounding factory equipment, and the design also reduces wiring work. Yamaha LCMR200   Über Yamaha Motor Robotics FA Section Yamaha Motor Factory Automation Section (FA Section), Unterabteilung der Yamaha Motor Robotics Business Unit von Yamaha Motor Corporation, konzentriert sich auf die Lieferung flexibler, hochpräziser Industrieroboter für die Herausforderungen der Präzisionsautomatisierung. Die Abteilung hat ihre Wurzeln in der Einführung der Robotertechnologie in die Yamaha-Motorradmontage und verfügt über mehr als 40 Jahre Erfahrung bei der Lösung von Automatisierungsaufgaben von der Montage großer Produkte bis zum Mikrometerbereich. Die Industrieroboter von Yamaha Motor werden heute von weltweit führenden Unternehmen in so unterschiedlichen Bereichen wie der Halbleiterfertigung und der Montage von Elektronikprodukten, Haushaltsgeräten, Automobilkomponenten und großen Flüssigkristallanzeigen eingesetzt. Yamaha Motor FA Section bietet eine weite Palette von Lösungen für die Roboter-Montage, darunter Einachsroboter, SCARA-Roboter, kartesische und Knickarmroboter. Innovationen wie das Linearfördermodul LCM200R, ein laufruhiger, platzsparender und vielseitigerer Nachfolger konventioneller Band- und Rollenförderer, bestimmen nach wie vor das Tempo in der Fabrikautomatisierung. Die Kerntechnologien der Robotik sowie Schlüsselkomponenten und komplette Robotersysteme werden im eigenen Haus hergestellt, was eine konstante Qualität und Kontrolle der Lieferzeiten sicherstellt. Yamaha Motor FA Section mit Sitz in Neuss (Deutschland) bedient Kunden in ganz Europa. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 1. März 2021
    Mit dem richtigen Rezept andere hinter sich lassen
    Businesses that build, handle, and ship products are looking for ways to increase productivity by raising output without compromising accuracy. It’s the key to delivering the best possible value and the fastest turnaround to maximize customer satisfaction and maintain the competitive edge. Automation as Opportunity Introducing new technology to automate assembly and handling processes is known to increase output and quality while at the same time helping reduce costs. The first companies to get the right recipe can quickly leave others behind. Infusing robots into industrial activities could be a part of the solution. Exact figures are application dependent, but one estimate is that introducing a robot to perform a single key process in a production line can increase output by as much as 40%. The simple facts are that robots can significantly increase speed, accuracy, reliability, and repeatability. They can also reduce the floorspace needed to perform a given process, enaling more efficient use of factory real-estate. The latest models are more affordable than ever. They are fast and compact and can be arranged to interact with traditional automation or to support processes performed by human workers. This makes them easy to deploy and use. But what can they really do? Which processes should be robotized first? How should the factory layout be reorganised to make way for them? And what about scalability? Today’s robots are available in sizes suitable for handling items from a few grams to several kilograms. Popular types include SCARA robots, cartesian, and single- or multi-axis robots that can be used in a standalone application dedicated to one process or as part of a group or assembly cell configured for a sequence of processes. From One Process to Many Companies are using these robots to accomplish a wide variety of automation projects. Yamaha has collaborated with customers and technology partners to solve industrial challenges through creative deployment of robots, achieving increased throughput and quality. With their generous movement range, high speed, and high accuracy, SCARA robots are an ideal vehicle to take on specific assembly processes. Yamaha YK-XG SCARA robots have been integrated in self-contained machines designed to perform one specific process, such as soldering (figure 1), screwing, or labelling. Figure 1. Yamaha’s YK-XG SCARA robot powers Reeco’s automated soldering machines. The SCARA is combined with conveyors, SMEMA electrical interfaces, and associated mechanisms to create a turnkey solution that industrial corporations can quickly install in their factory. the standardized SMEMA interfaces simplify connections to upstream and downstream automation, creating a fully inline solution. Alternatively, workpieces can be introduced manually or inserted using a feeder. These robot stations allow manufacturers to take a flexible, scalable approach to introduce robots in their factories. One by one, processes formerly done by hand, such as soldering connecting wires or through-hole components in circuit boards, tightening screws to a specific torque, and affixing labels can be automated to deliver greater speed, repeatability, and predictable tact times. Scaling up, two or more SCARA robots can be configured to cooperate and hence automate more complex assembly processes by combining their picking, placing, and positioning skills. Some examples in action today include assembling small automotive parts in high quantities and with high accuracy. Picking constituent parts from different pallets, checking each part using camera vision, and ensuring exact orientation using reference marks, the two robots finally hold the pieces together for soldering or spot-welding. Each assembled component is then palletised ready to be removed from the machine for final packing and shipping. These are just two examples showing how simple automation of a limited range of processes using low-cost SCARA robots can deliver rapid returns. However, bringing together a more diverse combination of robot types, including cartesian and single-axis or dual-axis robots, brings the opportunity to scale up from just one or two basic processes all the way to complete end-to-end assembly that fully automates production of items comprising multiple constituent parts. End-to-End Automation The Yamaha robot line up enables system integrators to build a complete assembly solution comprising the most suitable combination of individual robots. In a typical robot project, system integrators need to work out how to move components or work pieces from one machine to another using a belt-and-roller conveyor. Yamaha’s unique linear conveyor modules, such as the LCMR200 (figure 2), have changed everything by introducing multi-programmable transport that allows speed, position stops, and direction to be configured using RCX-Studio 2020: the same environment used to simulate, program, and operate all robots in the cell. Figure 2. The LCMR200 linear conveyor module brings programmable flexibility to workpiece transport. Capable of high-speed bidirectional motion and rapid acceleration, as well as small incremental movements, the LCMR features servo-controlled direct drive that eliminates the mechanical stoppers and position sensors typically needed to control a conventional conveyor. Each slider can be programmed and controlled independently, transforming the “passive flow” of an ordinary conveyor into actively controllable transport. With individual drives built-in, and controlled through Yamaha’s YHX series Universal Controller, transportation using LCMR modules can save about 65% of space behind the control panel and reduce wiring time by up to 50%. Using RCX-Studio 2020, workpiece transportation can be designed as an integral part of the robot solution, bringing valuable extra flexibility. Modules can be specified in various lengths, bringing the opportunity to optimize the layout of the assembly cell to maximize throughout and ensure the smallest possible overall dimensions. The LCMR200 provides extra convenience by allowing processes such as mechanical assembly or electrical testing to be performed on components while they remain on the transport module. Robot Selection and Programming From the outside, and even after an introductory demonstration, one robot can look very much like another. When choosing, it’s important to assess not only load-carrying capability, which is easy to compare using datasheets, but also other aspects of the design such as speed and cycle time, power consumption, and reliability. Yamaha’s position-detection system featured in YK-X series SCARA robots uses resolvers instead of typical encoders that can be affected by contamination such as grease or dust as well as magnetic or electrical fields. In addition, beltless drive featured on selected models ensures consistent long-term accuracy with no deterioration over time. Special models such as dust-proof and drip-proof variants are also available for use in environments such as clean rooms and food-preparation areas. Robot Vision, Simplified A simple, “unseeing” robot can handle a wide variety of industrial processes satisfactorily. However, introducing vision to the solution (figure 3) expands opportunities to tackle more complex processes, verify positional accuracy, and increase quality. Often, this is a complicated challenge that requires special machine-vision expertise to make the vision system talk to the robot controller. Yamaha brings vision into the robot programming and control environment with the iVY2+ vision system. The system includes camera modules up to 5Mpixel and camera-interface cards that are plug-in compatible with the RCX3 series robot controllers. There are also special vision instructions that simplify programming using RCX-Studio 2020 and enable high-speed component searching and tracking. Figure 3. Introducing vision increases performance and makes new applications possible. Simplifying the infusion of machine vision into the robot lets users take advantage of advanced capabilities such as blob detection, which enables picking, presence recognition, and high-speed counting when working with irregular shaped objects such as foodstuffs and clothing. The iVY2+ system also contains an image-edge search engine that enhances part detection under difficult lighting conditions. A wizard to help calibrate the system, and a simplified three-step process for workpiece registration that requires the user to select only image-capture, contour, and detection-position settings, eliminate laborious tasks and help users complete their setups as much as 80% faster than typical general-purpose vision systems.   Conclusion Industrial robots are now more affordable and easier to deploy in manufacturing, packaging, and logistics activities than ever before. A wide variety of robot types such as SCARA, cartesian, and single- or multi-axis is available, in small sizes suitable for light duty, although few robot makers are able to provide all types off the shelf in a wide range of sizes. These extra choices let users more easily scale their systems and start with a small trial to test the results. With increasing confidence, more and more processes can be automated. With the added flexibility of Yamaha’s LCMR200 linear conveyor module, a complete automated assembly cell can be built within a small footprint and quickly fine-tuned using graphical programming software. When considering the introduction of robots to automate one or more processes, design features that affect reliability should be considered alongside key performance parameters such as the payload rating, speed, and power consumption. Ensuring scalability is also critical. Integrating robot vision can be more complex that it may seem, programming can be difficult, and interactions between the robot and camera can be slow. A solution that promises easier integration of more advanced capabilities can deliver superior cost of ownership in the longer term. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM200R linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 22. Februar 2021
    Yamaha stärkt Vertriebsnetz für Factory-Automation beim jährlichen Distributor-Treffen
    Yamaha Motor Robotics FA Section, which provides advanced robots and associated expertise for diverse industrial assembly, parts-handling, and packaging applications, has held its 2021 annual distributor conference online, taking advantage of the chance to present diverse content and invite worldwide participation. The meeting opened with a welcome from the Netherlands by Yamaha Motor Europe’s CEO followed by live presentations from Japan including a new demonstration of the latest equipment capabilities.Yasushi Miyake, Branch Manager of Yamaha Motor Europe IM business said, “We have handled this year together strongly by supporting our customers and partners consistently and making our teamwork even more purposeful.” The demonstration highlighting advanced technical capabilities combined Yamaha’s latest YK-XG high-speed, compact SCARA robot and the new LCMR200 linear conveyor modules. The programmable modules deliver next-generation flexibility when transporting items between work processes, including bidirectional motion with software-configurable parameters that are easy to setup and fine-tune. Minimal hardware is needed, with the built-in motor driver and external YHX controller, enabling integrators to create compact and reliable solutions to automation challenges. A new working model, presented live from Japan, highlighted the speed and flexibility of Yamaha’s latest robots. Jumpei Ninomiya, Sales Manager for Yamaha’s FA Section, presented Yamaha’s award for Most Valuable Distributor to Renex. As Yamaha’s agent for Poland and the Balkans, Renex has delivered outstanding support including investing in training opportunities for partners. Renex’s management commented, “We are always committed to providing the utmost support for our customers and partners and will continue to respond with innovative solutions. It’s exciting and rewarding to share this journey with Yamaha.” Yamaha’s Jumpei Ninomiya presented Renex with the Most Valuable Distributor Award. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM200R linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 2. November 2020
    High-Speed Precision Coating with Robots Raises
    Manufacturing Productivity
    Der Einsatz eines Roboters zum Auftragen von Beschichtungsmaterialien kann die Produktivität erheblich steigern und wird durch die Kopplung von Servo- und Dosiersteuerung zur Gewährleistung optimaler Geschwindigkeit und stabiler Schichtdicke weiter verbessert.
  • 19. Oktober 2020
    Führender Automotive-Zulieferer findet schnellere Lösung für Hochleistungs-Robot Vision
    Ein führender Hersteller von Automomotive-Komponenten hat durch die Geschwindigkeit und Einfachheit des dedizierten Yamaha-Roboter-Vision-Systems RCXiVY2+ seine Automatisierungsherausforderungen effizient gemeistert.
  • 21. September 2020
    Wege in die Roboter-Prozessautomatisierung: Klein anfangen und dann richtig groß werden
    Die Einführung der Roboterautomatisierung in einen etablierten Workflow kann kompliziert und teuer erscheinen. Mit der neuesten, modularen Technologie und intuitiven Setup-Tools können Unternehmen
  • 14. September 2020
    Yamaha ernennt Etama zum Vertriebspartner für das Industrieroboter-Portfolio im Baltikum
    Etama bringt ein synergetisches Produktportfolio und eine starke Präsenz in Litauen, Lettland und Estland ein, um das Geschäft für zukunftsweisende Automatisierung auszubauen.
  • 7. September 2020
    Yamaha präsentiert Flexibilitätssteigerung für Roboter mit Software-Paket für Asycube-Vibrationsfeeder
    Das RCX320/340-Plugin integriert Asycube in SCARA- und kartesische Roboter und erhöht die Flexibilität bei der Bestückung mit Yamaha RCXiVY2+ Non-Stop-Vision
  • 8. Juni 2020
    Yamaha ernennt Routeco zum Vertriebspartner für Industrierobotik in Großbritannien
    Routecos Marktposition sowie seine technische Kompetenz und hervorragende Service-Infrastruktur machen das Unternehmen zum idealen Partner für die Stärkung von Yamahas Präsenz in Großbritannien
  • 2. Juni 2020
    Yamaha Motor bringt neues Linearfördermodul LCMR200 auf den Markt
    Beitrag zur Rationalisierung und Qualitätsverbesserung an komplexen und diversifizierten Produktionsstandorten zur Realisierung einer Fabrik der nächsten Generation
  • 18. Mai 2020
    Yamaha startet #DiscoverYamahaRobotics-Kampagne zur Einführung zahlreicher neuer Produkte des Jahres 2020 sowie der Präsentation von Aktionsangeboten
    Inhalte werden regelmäßig aktualisiert. Die Sektion Yamaha Motor Europe Factory Automation startet #DiscoverYamahaRobotics in sozialen Netzwerken und online und beschreibt schnelle und kosteneffiziente Wege zu fortschrittlicher Roboterautomation für Fertigung, Verpackung, Logistik und mehr.
  • 14. Mai 2020
    Yamaha Motor Europe bringt neues Visionsystem RCXiVY2+ auf den Markt
    Erkennt problemlos unregelmäßig geformte Objekte; geeignet u. a. für Lebensmittel, Arzneimittel, Kosmetika und Kleidung Yamaha Motor Europe kündigte heute an, dass es am 1. Juni das Bildverarbeitungssystem RCXiVY2+ auf den Markt bringen wird, das über eine neue „Blob-Erkennung“ verfügt, die die Kommissionierung, Anwesenheitserkennung und Hochgeschwindigkeitszählung mehrerer Werkstücke für unregelmäßig geformte Objekte wie Lebensmittel und Kleidung ermöglicht. Als Nachfolger des bestehenden iVY2-Systems bietet dieses neue Modell neben neuen Funktionen auch eine Hochleistungskamera und eine verbesserte Verarbeitungsleistung, die eine Reduzierung der Erkennungszeit um bis zu 45% im Vergleich zum aktuellen Modell ermöglicht.
  • 14. Mai 2020
    Yamaha Motor bringt Support-Software für Robotersteuerung der RCX3-Serie auf den Markt
    Neue Funktionen reduzieren die Einrichtungszeit des Robotersystems erheblich Yamaha Motor Europe gab heute bekannt, dass das Unternehmen am 14. Mai 2020 die Support-Software RCX-Studio 2020 für die Robotersteuerungen der RCX3-Serie auf den Markt gebracht hat. Dieses neue Produkt erweitert die bestehende Software RCX-Studio Pro um neue Funktionen wie einen 3D-Simulator und Programmvorlagen (automatische Mustergenerierung) und bietet darüber hinaus eine verbesserte Benutzerfreundlichkeit.
  • 9. April 2020
    Yamaha Motor stellt die SCARA-Roboter YK610XE-10 und YK710XE-10 vor
    Yamaha YK610XE-10 Erweiterung des Portfolios der produktivitätssteigernden Serie YK-XE Yamaha Motor Europe gab heute bekannt, dass die SCARA-Roboter der Serie YK-XE um die Modelle YK610XE-10 (610 mm Armlänge) und YK710XE-10 (710 mm Armlänge) erweitert werden. Die beiden neuen Modelle, die am 16. April auf den Markt kommen, bauen auf der hohen Geschwindigkeit und Effizienz der aktuellen Serie YK-XE auf.
  • 2. April 2020
    Innovationen bei SCARA-Robotern steigern Leistung und Zuverlässigkeit
    SCARA-Roboter können Pick&Place- und kleine Montageprozesse wie den Transfer von Werkstücken zwischen einzelnen Prozessen sowie das Schrauben und
  • 20. Februar 2020
    Yamaha stellt auf der Hannover Messe 2020 Innovationen für eine schnellere und einfachere Roboterautomation vor
    Am Stand G25 in Halle 6 präsentiert das Unternehmen die neuesten Entwicklungen in den Bereichen Hochgeschwindigkeitsbewegung, Bildverarbeitungssysteme und Programmierwerkzeuge
  • 18. Februar 2020
    Yamaha inspiriert europäische Partner in der Mission zur Förderung der Automatisierung
    Distributorentreffen der Factory Automation Section verifiziert Erfolge und setzt neue Ziele
  • 17. Februar 2020
    Yamaha Motor Europe Robotics division establishes Customer Service & Support Function for FA Section
    Mit werksunterstützten Wartungs-, Reparatur- und Hochrüstungs-Dienstleistungen bietet Yamaha Motor für seinen wachsenden Kundenstamm einen vollständigen Lifecycle-Support Die FA-Section von Yamaha Motor Europe hat eine neue Kundendienst- und Support-Abteilung eröffnet, um Kunden in ganz Europa fachkundig zu unterstützen. Der Customer Service & Support mit Sitz in der Yamaha Motor Europe-Zentrale in Neuss ist einsatzbereit, um mit Systemintegratoren und Endanwendern zusammenzuarbeiten und werksunterstützte Wartungs-, Reparatur- und Hochrüstungsdienste für vorhandene Anwendungen anzubieten. „Wir haben die FA-Sektion gegründet, um die Yamaha-Robotertechnologie in Europa noch stärker zu implementieren und haben in kurzer Zeit vielen Unternehmen in verschiedenen Branchen dabei geholfen, Prozesse wie Materialtransport, Produktionsmontage und Verpackung zu transformieren“, sagte Ryosuke Nakamura, General Manager der FA-Sektion von Yamaha Motor Europe. „Die neue Service-Engineering-Abteilung erweitert unser Angebot im Bereich Solution-Engineering, um unseren wachsenden Kundenstamm über den gesamten Produkt-Lebenszyklus hinweg zu unterstützen. Die Service-Abteilung der FA Section ist ab Februar 2020 aktiv und bereit, Kundenservice-Termine zu vereinbaren. Weitere Informationen finden Sie auf der Website der Yamaha Motor Europe FA Section unter https://www.yamaha-motor-im.de/en/fa/.
  • 17. Oktober 2019
    Yamaha zeigt auf der Motek 2019 produktivitätssteigernde Roboterinnovationen
    Das einzigartige flexible und skalierbare Fördermodul LCM100 und innovative Roboter- und Bildverarbeitungsfeatures vereinfachen die Integration und maximieren Leistung und Effizienz Yamaha Motor Europe Factory Automation Division hat gezeigt, wie die neuesten Robotersysteme es Unternehmen ermöglichen, Produktivität, Durchsatz und Qualität in wichtigen Fertigungsprozessen zu steigern, und zwar in Demonstrationen, die auf der Motek-Messe 2019 in Stuttgart vom 7. bis 10. Oktober präsentiert wurden. Herr Ryosuke Nakamura, Branch Manager Yamaha Motor Europe IM Business, kommentierte: „Wir hatten das Privileg, einflussreiche Besucher von Fertigungsstandorten aus ganz Europa empfangen zu dürfen und ihnen die innovativen und überzeugenden Lösungen der Roboterprozessautomatisierung von Yamaha präsentieren zu können“. Die Besucher des Standes konnten sich selbst ein Bild von Yamahas umfassender Palette an kartesischen und SCARA- sowie ein- und mehrachsigen Robotern für die Effizienzsteigerung bei wichtigen industriellen Prozessen machen. In fünf Demonstrationen wurden spezielle Designmerkmale vorgestellt, die die Geschwindigkeit erhöhen, den Setup vereinfachen und die Produktivität maximieren:
  • 19. September 2019
    Verbessertes Visionsystem für Yamaha-Roboter vereinfacht die Einrichtung der Linie und steigert deren Leistung
    Das neue iVY2-Machine-Visionsystem profitiert von speziellen Bildverarbeitungs-Anweisungen der Multi-Robotersteuerung RCX340 Yamaha Factory Automation Section hat das Visionsystem der nächsten Generation für seine einzigartig flexible Palette von SCARA-, Orbital- und kartesischen, sowie ein- und mehrachsigen Robotern vorgestellt. Das auf Yamahas aktueller Robotersteuerung RCX340 beruhende neue iVY2-Visionsystem vereinfacht den Linien-Setup, erhöht die Leistung und integriert die Funktionen des Machine-Visionsystems erstmals in das Robotersteuerungsprogramm, was die Effizienz erhöht und die Bedienung vereinfacht. iVY2 unterstützt Kameras bis zu 5 Megapixel, um hochaufgelöste Bilder für eine schnelle und stabile Werkstückerkennung zu ermöglichen. Darüber hinaus erspart die durch Softwareassistenten geführte Autokalibrierung und die unkomplizierte, dreistufige Werkstückerfassung aufwändige Einrichtaufgaben. Benutzer können den Setup bis zu 80% schneller abschließen als bei herkömmlichen Universal-Visionssystemen. Weitere leistungsstarke Funktionen des iVY2 Vision-Systems sind eine Bildkanten-Suchmaschine, die die Teileerkennung unter schwierigen Lichtverhältnissen verbessert, und ein DVI-I-Ausgang, der es dem Anwender ermöglicht, den Suchstatus jederzeit zu analysieren, selbst während der Kalibrierung oder wenn der Roboter automatisch arbeitet. Parameter für bis zu 254 Teile-Arten können im System hinterlegt werden.
  • 11. September 2019
    SCARA-Roboter „YK400XE“ neu im Programm
    Der Roboter überzeugt durch erhöhte Nutzlast und verringerte Zykluszeit Die Yamaha Motor Europe Fa Section wird am 17. September 2019 den neuen SCARA-Roboter „YK400 XE“ (mit einer Armlänge von 400 mm) vorstellen. Der „YK400XE“ ist ein Nachfolgemodell des „YK400XR“, der sich durch hohe Genauigkeit und Leistung bei gesenktem Preis auszeichnet. Die maximale Nutzlast konnte mit 4 kg um das 1,4-fache gegenüber dem Vorgängermodell Modell gesteigert werden. Die Standardzykluszeit wurde um ca. 10% reduziert und liegt jetzt bei 0,41 Sekunden. Erreicht wurde die Leistungssteigerung durch eine Verstärkung des Antriebs und der Robustheit des Arms sowie verbesserter Leistung des Controllers „RCX340“. So konnte die Produktionsleistung merklich erhöht werden. Trotz erhöhter maximaler Nutzlast und verbesserter Zykluszeit wurde eine herausragende Kosteneffizienz erreicht. Da die Einbaumaße voll kompatibel zum Vorgängermodell sind, ist eine Umrüstung auf das neue Modell problemlos möglich. Yamaha präsentiert den neuen Roboter vom 7. bis 10. Oktober 2019 auf der Fachmesse Motek in Stuttgart: Stand 7328, Halle 7.
  • 23. August 2019
    Yamaha präsentiert auf der Motek 2019 die hocheffiziente Echtzeit-Bildverarbeitung für eine schnellere Roboterautomatisierung
    Messestand zeigt breites Lösungsportfolio zur Vereinfachung und Rationalisierung der Prozessautomatisierung Die Yamaha Motor Europe Factory Automation Section wird auf der Motek in Stuttgart vom 7. bis 10. Oktober 2019 Technologien zur Beschleunigung von Robotik-Prozessen, einschließlich der visuellen On-the-Fly-Inspektion und -Ausrichtung, vorstellen. Das On-the-Fly-Visionsystem von Yamaha basiert auf Technologien, die im Bereich der präzisen oberflächenmontierbaren Elektronikbaugruppe perfektioniert wurden, um aufgenommene Teile mit voller Geschwindigkeit zu prüfen und auszurichten, wodurch die Taktzeit von Prozessen wie Palettieren, Depalettieren und mechanische Montage erheblich reduziert wird. Die Demonstration läuft auf dem preisgünstigen SCARA-Roboter YK-400XR und zeigt die Unterschiede des Hochgeschwindigkeitssystems gegenüber konventioneller Bildverarbeitung auf, durch die potenzielle Zeiteinsparungen und Produktivitätsvorteile realisiert werden. Auf dem Stand Nr. 7328 in Halle 7 können sich die Besucher über die Linear-, Mehrachs- und SCARA-Roboter sowie die kartesischen Roboter von Yamaha informieren, die in vielen Größen und Konfigurationen einschließlich spezieller Reinraumvarianten erhältlich sind. Gemeinsam schaffen sie eine einzigartige Möglichkeit, die Systemintegration aus einer Hand zu vereinfachen und zu rationalisieren. Das komplette Portfolio umfasst Antriebe und Controller, darunter den hochmodernen RCX340, das einzigartige programmierbare Linearfördermodul LCM100, iVY Plug & Play-Vision-Systeme und Zubehör wie elektrische Greifer und hochauflösende Megapixel-Kameras mit flexiblen Objektivoptionen.
  • 4. Juli 2019
    Die weiterentwickelte SCARA-Roboterfamilie von Yamaha steigert Geschwindigkeit, Vielseitigkeit und Laufzeit
    Erweiterte Größen- und Nutzlastbereiche sowie die Nutzung innovativer Funktionen maximieren Möglichkeiten zur Automatisierung Yamaha Motor Europe Factory Automation Section, der einzige Hersteller von Robotern in allen gängigen Industrieformaten für die End-to-End-Roboter-Prozessautomatisierung, erweitert seine SCARA-Familie. Die verfügbaren Armlängen reichen jetzt von nur 120 mm bis 1200 mm und die maximale Nutzlast von 1 kg bis 50 kg, um eine Vielzahl von Pick & Place-, Ver- und Entpackungsaufgaben sowie mechanischen Montageaufgaben zu beschleunigen. Die YK-XG und YK-TW Orbital-SCARA-Serien enthalten neueste Funktionen, die eine effiziente Bewegung und überlegene Langzeitgenauigkeit gewährleisten. Durch die direkte Platzierung der Rotationsachse auf das Untersetzungsgetriebe und den Einsatz eines speziell entwickelten Hohlwellenmotors ermöglicht der riemenlose Antrieb des YK-XG-Roboters eine schnelle Drehung der R-Achse mit großen versetzten Lasten, die bei herkömmlichen, riemengetriebenen Robotern eine spürbare Verzögerung erfordern würden. Die neuesten Modelle zeichnen sich durch eine um 45% höhere Geschwindigkeit der X-Y-Achse gegenüber den Vorgängergenerationen aus und erreichen jetzt 7,6 m/s, eine um 35% höhere Winkelgeschwindigkeit bis zu 2,3 m/s und eine um 93% höhere Geschwindigkeit der R-Achse von 1700 Grad/s.
  • 18. Juni 2019
    Yamaha Robotics Distributorentreffen verbindet Technologie mit Track-Action Motorradrennen
    Europäische Vertriebspartner und Distributoren diskutieren Geschäftliches und erleben die Rennen beim MotoGP in Barcelona Die Yamaha Factory Automation Section (FA Section) kombinierte ihren Geschäftsschwerpunkt in der Robotik mit der Begeisterung für MotoGP auf dem jährlichen Distributorentreffen in Barcelona während des MotoGP-Rennwochenendes vom 14. und 15. Juni. Alle europäischen Roboter-Vertriebspartner des Unternehmens haben sich versammelt, um über Technologie und Strategie zu sprechen – und die Motorsport-Heroen von Yamaha in Aktion zu sehen. Die Gruppe machte sich am Samstag sofort an die Arbeit, als die Leiter der Yamaha FA Section die neuesten Innovationen präsentierten, die das Unternehmen voranbringen sollen. Yamaha ist der einzige Industrieroboterhersteller, der Standardprodukte in allen Formaten anbietet – SCARA, kartesische, lineare sowie ein- und mehrachsige Roboter – mit dem zusätzlichen Vorteil des einzigartigen, programmierbaren Roboter- Fördermoduls LCM100. In individuellen Gesprächen am Nachmittag haben die Distributoren ihre Pläne vorgestellt und die Unterstützungen besprochen, die sie für das kommende Jahr benötigen. „Die Zeit ist reif für signifikante Investitionen in die Robotertechnologie in allen Branchen – von der Präzisionsmontage und der Hochgeschwindigkeitsfertigung bis hin zu Verpackung und Logistik – die die Produktivität auf die nächsthöhere Stufe heben“, sagte Herr Ichiro Arimoto, General Manager der Yamaha Motor Europe Robotics Division. „Wir werden den Support für unsere Vertriebspartner hier in Europa weiter verstärken, um den Kunden die fortschrittlichsten, flexibelsten und effizientesten Lösungen bieten zu können.“
  • 4. Juni 2019
    Yamaha liefert konfigurierbare Linear-Fördermodule für Roboter-Montagezellen
    Flexibles Linearfördermodul LCM100 steigert die Effizienz im Vergleich zu konventionellen Riemen- und Rollenförderern. Das Linearfördermodul LCM100, eine einzigartige Lösung für die Roboter-Montage von Yamaha Factory Automation Section, ermöglicht einen saubereren, leiseren und flexibleren Werkstücktransport. Durch Vereinfachung des Produktionsstarts, Reduzierung von Zykluszeiten und Erhöhung der Genauigkeit steigern die Module Produktivität und Ausbeute, während sie gleichzeitig den Geräuschpegel senken, die Zuverlässigkeit erhöhen und die Größe der Roboter-Montagezellen verringern. Im Gegensatz zu herkömmlichen Riemen- und Rollenförderern enthält jedes LCM100-Modul einen unabhängig gesteuerten Hochgeschwindigkeits-Linearantrieb, der bidirektionale Bewegungen und programmierbare Geschwindigkeiten von bis zu 3000 mm/s ermöglicht. Produktionslinien können optimal konfiguriert werden. Sie sind unabhängig von der längsten Prozesszykluszeit und sparen Platz durch die effiziente Nutzung von Inline-Equipment. Weitere Vorteile der Linearantriebe sind reibungsarmes und verzögerungsfreies Beschleunigen und Abbremsen. Die robusten und stabilen Schlitten mit einer Positioniergenauigkeit von besser als ± 0,015 mm ermöglichen die Durchführung von Montagearbeiten direkt auf dem Transportmodul. Ohne dass Werkstücke von einem herkömmlichen Förderband zu einem Arbeitstisch umgeladen werden müssen, können Taktzeiten kürzer und Montagezellen kleiner und kostengünstiger werden. Ohne Mikro-Endschalter oder Endanschläge lassen sich die Schlitten-Zielpositionen schnell und einfach per Software umprogrammieren. Darüber hinaus sind die LCM100-Module auf einfache Austauschbarkeit und schnelle Rekonfiguration ausgelegt, so dass Montagezellen insbesondere für kleine Produktionsstückzahlen schnell und damit kostengünstig eingerichtet werden können. Die Module lassen sich leicht entfernen oder ersetzen, um Ausfallzeiten zu minimieren oder in anderen Montagezellen verwenden, um die Auslastung zu maximieren.
  • 22. Mai 2019
    Yamaha FA Section stellt Roboter-Produktlinie vor, um die Herausforderungen der Automatisierung in der Praxis zu lösen
    Auf der Hannover Messe im April dieses Jahres dominierten Leichtbau-Koboter. Obwohl sie eine verlockende Vision für unsere industrielle Zukunft bieten, werden viele Automatisierungsherausforderungen effizienter gelöst, indem koordinierte Hochgeschwindigkeitsroboter in einer voll integrierten Montagezelle zusammenarbeiten. Die Factory Automation Section von Yamaha ist der einzige Roboterhersteller, der ein Portfolio anbietet, das alle gängigen Industrierobotertypen wie kartesische und SCARA-Roboter sowie ein- und mehrachsige Knickarmroboter umfasst. Das breite Spektrum an Maschinen, Steuerungen, Programmiersoftware und Zubehör ermöglicht es Lösungsintegratoren, ganze Montageabläufe zu automatisieren. Dabei profitieren sie von einem komfortablen technischen Support aus einer Hand und einer gemeinsamen Umgebung für Programmierung und Steuerung. Die Palette umfasst Maschinengrößen für Nutzlasten von 5 kg bis 50 kg, mit speziellen Optionen wie Hochgeschwindigkeits-Pick & Place-Roboter, staub- und tropfwassergeschützte Ausführungen sowie Reinraummodelle. Merkmale wie verschmutzungsresistente Positionsresolver und innovative, vektorgeregelte Antriebe sorgen für höchste Geschwindigkeit und Zuverlässigkeit. Darüber hinaus überwindet das einzigartige, für eine Zusammenarbeit mit Robotern ausgelegte Linearfördermodul LCM100 von Yamaha die Einschränkungen des konventionellen Riemen- und Rollentransports, indem es bidirektionale Flexibilität, unabhängige Modulgeschwindigkeitssteuerung und einfache Umprogrammierung ermöglicht. Flexible Steuerungsoptionen sorgen für Geschwindigkeit und Einfachheit, wobei die Bildverarbeitung vollständig in die Robotersteuerung integriert ist und Yamahas spezielle Bildverarbeitungsbefehle für eine einfache Einrichtung und sofortige Reaktion sorgen. Die Eliminierung der Schnittstellenverzögerung, die typischerweise die Kommunikation mit einem herkömmlichen, unabhängigen Bildverarbeitungssystem verlangsamt, ermöglicht höhere Bewegungsgeschwindigkeiten für eine verbesserte Taktzeit. To achieve the most efficient solution to your automation challenges in the real world today, contact Yamaha FA Section office in Neuss. To find out more and get in touch with Yamaha FA Section European sales managers please visit www.yamaha-motor-im.eu.
  • 11. April 2019
    Yamaha Factory Automation Section eröffnet ein Vertriebs- und Supportbüro für Roboter in Europa
    Die Yamaha Factory Automation Section, eine Unterabteilung der Yamaha Motor Robotics Business Unit, hat ein Europa-Büro eröffnet, um den Support für Vertriebspartner und Kunden von Yamahas hochentwickelten, industriellen Robotersystemen und -produkten zu verstärken. Das neue Support-Büro, Teil der Yamaha Motor Europe N.V. in Neuss bei Düsseldorf, ist strategisch günstig gelegen, um intensiven Kontakt mit Yamahas Vertretungen und Distributoren in ganz Europa zu halten. Das Netzwerk besteht aus Partnern mit langjähriger Erfahrung in der Industrierobotik, die einen schnell wachsenden Kundenstamm bedienen und jetzt von einem noch besseren Zugang zu umfangreicheren Dienstleistungen direkt von Yamaha profitieren. „Es ist der richtige Zeitpunkt, um die Unterstützung für unsere europäischen Partner zu verstärken, da führende Unternehmen die Robotereinsätze als eine der Grundlagen der digitalen Transformation spürbar erhöhen“, sagte Ichiro Arimoto. „Yamaha Factory Automation Section bietet eine einheitliche Produktpalette, erstklassigen Support und die Gewissheit, dass die eigene Produktion, Forschung und Entwicklung es den Industrieanwendern ermöglicht, sich souverän mit Robotern zu beschäftigen und einen maximalen Wettbewerbsvorteil zu erzielen.“ Die neuen Robotergenerationen, die modernste Steuerungstechniken mit maschinenlernender, künstlicher Intelligenz (KI) nutzen, treiben ein schnelles Produktivitätswachstum voran und sind ein wichtiger Faktor für Industrie 4.0 und das Industrial Internet of Things (IIoT).
  • 4. März 2019
    Yamaha Motor Exhibits at World’s Leading Industrial Technology Trade Fair HANNOVER MESSE 2019 — Abundant Robot Line-up Provides Optimal Solutions for Diverse Automation
    WATA, March 4, 2019—Yamaha Motor Co., Ltd. (Tokyo:7272) announced today that it will exhibit a booth based on the theme of “YAMAHA ROBOT BEST SOLUTION – Improved Production Line Performance,” at the HANNOVER MESSE 2019, a B to B industrial technology trade show to be held in Hannover, Germany, from Monday, April 1 to Friday, April 5, 2019. The HANNOVER MESSE is the world’s leading industrial trade fair, at which leading-edge industrial technology and products are gathered in one place. (The 2018 event saw exhibits held by approx. 6,500 companies attracting around 220,000 visitors). The booth has increased space to about twice that of last year where it will showcase demonstrations such as the “Linear Conveyor Module LCM 100,” a linear motor-based transport robot, and a SCARA robot which boasts high speed and high accuracy. These exhibits work toward greater productivity and improved variability on production lines, providing best solutions for factory automation. Yamaha Motor: Exhibitions and Demonstrations 1) Speaker assembly demonstration using the LCM 100 transport robotLinear Conveyor Module LCM100The LCM 100 can transport workpieces at high speed and can be assembled directly on the slider, so that the transfer time is shortened considerably. In addition, with linear motor control, it is possible to change the stop position and process similar operations, bringing greater production line designs with higher levels of variability. 2) On-the-fly Function Demonstration (non-stop recognition camera)Robot Integrated Vision System “iVY 2” & Multi-Axis Controller “RCX 340”Our exhibition will introduce a function that can shorten pick and place tact times with position correction after test piece handling. With the robot-integrated vision system “iVY2,” through the multi-axis controller “RCX 340” capable of synchronous operation with multiple stand robots, recognition, correction and mounting can be performed without stopping robot operation, working to help improving throughput significantly. Contact info Oumayma Grad Marketing Communications Manager Hansemannstraße 12 41468 Neuss Germany Office: +49 2131 2013 538 Mobile: +49 1517 0233 297 Fax: +49 2131 2013 550 Email: oumayma.grad@yamaha-motor.de Web: www.yamaha-motor-im.eu 3) Auto parts sealing demonstrationSCARA robot “YK 400 XR” & Cartesian RobotsWith the SCARA robot “YK 400 XR” boasting a standard cycle time of 0.45 seconds, the dual lane assembled cartesian robot greatly shortens the cycle time of the coating process.For test pieces on cartesian robots with two lanes, one carries out coating, while the other replaces the test piece using a SCARA robot. As a result, the work ratio of the dispenser is improved which significantly increases productivity. European Industrial Robot Market Overview (Total welding, painting/coating, actuator, assembly, conveyance, and clean conveyance system) The industrial robot market in Europe continues to grow due to the declining labor force, rising wages, increased factory automation and quality improvement needs. History of Yamaha Motor Industrial Robots 1974 : Yamaha Motor begins research and development into industrial robots in order to streamline production and increase machining precision in its own motorcycle factories 1976 : SCARA robots introduced to Yamaha Motor motorcycle production lines 1984 : IM Business Unit established (Yamaha Motor Hamakita Plant) / SCARA robot sales begin 1991 : IM Technology Center completion (Sodecho, Hamamatsu city, Shizuoka Prefecture) 2006 : IM Technology Center and factory expansion 2013 : China (Suzhou City) sales office established Linear Conveyor Module LCM100 is launched 2016 : Integrated control robot system “Advanced Robotics Automation Platform”is launched Launch of Linear Conveyor Module “LCM-X”, and Single-axis robot “GX Series” Launch of Stepping Motor Electric Actuator “YLE series,” and integrated Controller “YHX Series” 2017 : New Robotics Business building begins operation 2018 : First exhibition at HANNOVER MESSE 2018 Opening of the Yamaha Motor Advanced Technology Center (Yokohama) Yamaha Motor’s lineup of products to powerfully support the automation of production sites is wide-ranging in variation. YMC builds on these strengths to pursue greater efficiency and quality in increasingly complex, diverse, and high-speed production sites. About YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM100 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Hamamatsu, Yamaha FA Section serves customers globally through its worldwide sales network spanning China, Taiwan, Korea, south Asia, north America, Australia/New Zealand, and Europe. www.yamaha-motor-im.eu
  • 18. Juni 2018
    Solving Surface-Mount Assembly Challenges Presented by 0201mm Components
    Yamaha Motor Europe Robotics Division – SMT section Richard Vereijssen B.Sc – Product Marketing manager Introduction: Miniaturization, Driven By Demand The global electronics industry’s ability to deliver seemingly limitless ongoing advancements in product capabilities has encouraged an insatiable consumer demand for more, better, and smaller. Demands for high functionality of mobile devices, smart watches, military, medical, audio, and wearable technology continue to drive requirements for miniaturisation. The advancements being achieved in large-scale CMOS integration, described by Moore’s Law, are among several factors currently aiding relentless gains in functionality, performance and miniaturisation. The fabrication and packaging processes for manufacturing chip-size resistors and capacitors also continue to advance, enabling components to be produced down to sizes in the region of 0.25mm x 0.15mm (0201). Excellent dimensional stability enables these components to be assembled using standard inline surface-mount equipment. Initially, the tiniest components (not only 0201: adoption of 01005 will begin in the foreseeable future) are expected to be used in extremely space-constrained applications, such as System in Package (SiP) or Package in Package (PiP) devices. These answer demands for extreme miniaturisation and circuit densification in mobile devices, like smartphones and tablets. Ultimately, of course, they will be demanded for general surface-mount assembly in PC motherboards, industrial automation products, IoT nodes and gateways, and others. Automotive electronics is another sector that demands increasing circuit capability and complexity, where small size and lightness are key desires of product designers. 1. Progression of Chip-Component Sizes Continuous advancements, both in manufacturing capabilities and market demand for smaller or more feature-rich end products, has driven relentless miniaturisation of component sizes generally, manifested in the emergence of semiconductor packages like flip-chip and CSP, power-discrete packages like LGA, and surface-mount chip resistors and capacitors in ever-smaller form factors: as figure 1 shows, the 1005 (1.0mm x 0.5mm) form factor has been the most widely used since the mid 2000s to date, while more recently an increasing number of designs have targeted the smaller 0603 (0.6mm x 0.3mm) size; sometimes even when design space is not a concern. The popularity of 0402 (0.4mm x 0.2mm) devices is currently rising, while 0201 devices are expected to supersede the older 1608 (1.6mm x 0.8mm) form factor around the year 2022. Figure 1. The 0201mm form factor for chip components is expected to become dominant by 2022. The table compares metric and imperial component designations, with their applicable sizes. Confusion abounds, particularly where designations clash - such as 0603, 0402 and 0201. As the drive continues to explore further miniaturisation, it will be preferred to standardise on metric nomenclature going forward as an aid to communication and to avoid confusion when referencing components. Table 1. Comparison of metric and imperial designations for standard chip components. Note that only chip resistors – not capacitors – have been offered to the market in the 03015 form factor. Moreover, two different "0201" outlines have been proposed by various manufacturers: 0.2mm × 0.1mm and 0.25mm × 0.125mm. The industry needs a single commonly accepted standard and, indeed, 0.25mm × 0.125mm is expected to become the accepted specification. The shock and awe comes when comparing the area and volume of the later, smaller form factors with their predecessors like 1005. The area of an 0201 component, when mounted on the substrate, is 0.0313mm2: only 6% of the area occupied by a 1005-size chip. Moreover, the volume of a 0201 capacitor – typical height 0.125mm - is 0.004mm3, or just 1.6% of the volume of the 1005 parts. 0201 resistors are even lower volume, having thickness of 0.08mm. The first major deployments of 0201 devices are expected to be in highly integrated package-in-package assemblies, aiming to achieve further circuit-size reductions in products such as smartphones, tablets, and IoT devices. This paper discusses board design, as well as printing, mounting, and inspection processes for assembling 0201 devices, as the next major challenge for product designers, OEMs and EMS businesses. All need to understand how these components can be adopted in surface-mount assembly processes, achieving the accuracy and repeatability needed to ensure high end of line yield for commercial viability. This calls for an evaluation of the key issues affecting the performance of printing, component mounting, and inspection processes. The presentation, configuration and materials for tape and reel, at the smaller component sizes, are still being developed. Paper tape is inefficient, in terms of parts per linear millimetre. Although 0201 parts today are usually packaged in W4P1 (4mm width, 1mm pitch) embossed tape, the narrow tape width is difficult to handle, and W4P1 feeders are expensive. A W8P0.5 specification has been proposed. 2. Board Design Developing an assembly process for any product begins with the PCB design as the foundation for the project; in particular, the pad sizes and positions, and distances to adjacent components. Previous experience shows that the relationship between the pad size and the aperture size has an important influence on paste release. When the copper is etched, the resulting pad can become slightly smaller than the designed aperture of the stencil. If this happens the paste at the edge of the aperture cannot touch the pad and instead is suspended in the gap between the pad and the stencil. As a result, the paste at the edge of the aperture may fail to release when the stencil and substrate are separated. Figure 2 shows how detachment defects can occur when the pad is slightly smaller than the aperture. Transfer rates become erratic, resulting in insufficient paste or poorly shaped deposits. To combat this, the pad design will need further work to establish suitable guidelines for pad size, spacing between pads, and distances to adjacent components. One recommendation is to oversize the pad to ensure contact. Figure 2. Adhesion to the pad near stencil edges is important to ensure proper paste release. 3. Printing For the print process to be successful, at the smallest chip-component sizes, each element needs to be reviewed and optimised. The bottom line – as always – is that is that if print results are not repeatable, defects are in-built from the start that cannot be remedied by corrections further downstream. Printing is the process that presents the most challenges, particularly in relation to mixing the smallest components with larger components in a high-volume application. There are mainly four points to consider, to establish a secure and stable printing process: (1) The seal or gasket between the stencil and PCB (2) Controlling the aperture fill (3) The release of the PCB/paste from the stencil (4) PCB support As far as paste release is concerned, strong adhesion between the solder paste and the lands on the substrate (usually exposed copper pads on FR4 PCB) is needed to overcome the friction between the solder paste and the aperture walls. This is influenced by board design, as described earlier and in section 3.3, stencil design including aperture surface finish and any low-friction treatment that may be applied (section 3.5), and the stencil/board separation speed selected at printer setup. Solder paste vendors typically recommend a constant separation speed greater than 3mm/s for best paste release and cycle time. PCB support, or tooling has a key role in the success of printing small feature sizes. The rule of thumb is that the more support, the better the results. The aluminium tooling plate remains the gold standard for support. Experience with double-sided boards containing densely spaced components has shown that grid tooling is superior to pins. However, a tooling plate may be required for substrates less than 1mm thick. Note that top clamps should be avoided, as these can adversely affect aperture filling at distances of more than 25mm from the board edge. Before discussing changes to the print and placement processes, it is important to mention the cleanliness of the machine. Excess paste accumulating in the printing machine, becoming dry and hard over time, can have obvious negative effects on the print results. As the scope for variation becomes large when dealing with small component printing, it is vital to be sure the results are not impacted by random dropped paste. 3.1 Stencil-to-PCB Seal: Controlling the Gap Maintaining adequate contact between the stencil and substrate as the squeegee passes over the stencil apertures is important. A good gasket created by proper contact between the PCB and stencil will reduce bleed-out of the paste and help lower stencil-cleaning frequency. Various types of defects may result from an excessive gap between the stencil and substrate. Before attempting to print with challenging aperture sizes, the machine calibration between the board and the stencil should be checked to make sure it is within the manufacturer’s specification. The PCB thickness should also be measured properly, not using guesswork, and measuring a random sample of the lot to ensure consistency. Improper sizing can either over-drive the PCB into the stencil, or create a gap that will produce poor results. If the aperture size is small, insufficient paste may come into contact with the pad resulting in a lack of adhesion (figure 3). In this case, paste remains in the stencil apertures instead of transferring to the substrate after separation. Figure 3. Poor adhesion can prevent paste release upon stencil separation. On the other hand, a proportion of paste can escape from stencil apertures and spread onto the substrate surface (figure 4). With the smaller apertures for 0201 size components, the process becomes more sensitive to the volume deposited and less tolerant of un-released or escaped paste. Figure 4. Paste can escape onto the substrate surface, causing defects like bridging. Vacuum clamping, after alignment and before the squeegee excursion begins, is recommended to ensure accurate positioning and maintain contact between the stencil and substrate throughout the printable area. To ensure accuracy is maintained, after vacuum is applied, the stencil frame must be sufficiently rigid. Recognising that low-cost stencil frames can lack the required rigidity, and may distort when vacuum is applied, these should be carefully considered: upgrading the stencil specification to a frame of higher quality may be necessary. Under any circumstances, small gaps are likely to occur between the substrate and stencil, and can be tolerated within certain limits. Experimentation has shown that a gap of up to 0.2mm can be tolerated, resulting in acceptable print quality. Figure 5 shows compares the volume of paste transferred to the substrate through 0.22mm x 0.24mm stencil apertures for stencil-substrate gap as large as 1.0mm, demonstrating acceptable repeatability up to about 0.2mm. Figure 5. Paste-volume repeatability is acceptable with a stencil-substrate gap of about 0.2mm. If the maximum acceptable gap is not to be exceeded, it is imperative to ensure the upper surface of the substrate and lower surface of the stencil are extremely clean. Moreover, other features that affect surface flatness – such as labels or silk-screen printing of a board-ID barcode or component-position identifiers – can significantly challenge process control. A typical silk-screen process can produce ink deposits that may be between 20µm and 100µm thick, which is enough to allow unwanted leakage of paste from apertures during printing. Elimination of silk screening for component identification is recommended. Among potential solutions, Photo-Imageable Embedded Reference Designators (PIERD® - a trademark of Tokai Shinei Electronics Corporation Limited) can create visible markings in the solder-resist layer and require no ink to be deposited on the surface of the substrate. Alternatively, new flexible stencils have been developed, such as the Taiyo Yuden ER type, Nakanuma FIT, Micron Process Lab PH, or Cube SMT Lab P-Cube Stencils. These feature a resin coating on the underside of the stencil, typically between 10µm and 30µm thick, which conforms against small surface irregularities to prevent paste escape. Another key point is to ensure the PCB solder-mask height is level with the pad height. Sunken pads, at a lower height than the mask, produce a gap that prevents contact between the board and stencil resulting in erratic print deposits. 3.2 Controlling Aperture Fill Proper filling of the stencil apertures during squeegee excursion is known to depend most strongly on paste pressure and excursion speed . Squeegee pressure has an impact on filling, but reaches a point where the effect on the paste becomes saturated and blade deflection is the result. This tends to cause scooping from larger apertures, resulting in poorer filling. Paste pressure is related to the weight of the paste roll on the surface of the stencil, and the squeegee angle. Squeegee angle has been shown to have a greater impact on the aperture fill than the conventional parameters of speed and pressure. The ability to optimise the angle between 65 degrees – typically used for low-viscosity materials – and 45 degrees used for polymer or adhesive printing enhances the ability to maximise aperture fill. Reducing the squeegee angle extends the time that the material spends over the aperture. In addition, a greater proportion of the blade surface area is in contact with the material, and so increases the impact on aperture filling. The optimal range for printing with solder paste is between 60 and 50 degrees. By reducing the squeegee angle as the paste roll size diminishes (as the paste is forced into the stencil apertures), the paste pressure can be kept more or less constant between the times at which the paste is replenished. Some printing machines have no ability to vary the squeegee angle, so the blades are normally set to 60 degrees. As the size of the apertures becomes smaller, with the introduction of 0201 chip-size components in mainstream SMT manufacturing, the ability to vary the squeegee angle – as provided by the Yamaha 3S (Swing Single Squeegee) head - delivers an advantage for process control and consistency. 3.3 Paste Release: Adhesion of Solder Paste and Lands The industry still needs to establish optimal land sizes for soldering 0201 terminations. The aperture size should be slightly less than the land size, to maximise adhesion at the areas of the land closest to the edges of the aperture and thereby ensure consistently good paste release and deposit shape. The transfer efficiency of the apertures can be determined using aspect-ratio and area-ratio formulas. The aspect ratio (aperture width ÷ stencil thickness) can show whether the stencil thickness is appropriate for the aperture width, but does not give a clear picture of the transfer efficiency. An aspect ratio of 1.5 is generally recognised as the minimum for acceptable paste release. The area ratio (bottom area ÷ lateral area) is illustrated in figure 6. This provides a better indicator of transfer efficiency. As component dimensions and solder-terminal sizes have reduced, so too has the minimum acceptable area ratio for stencil apertures. When first introduced, the minimum score was 0.66. For the latest components, an area ratio of about 0.40 is considered mandatory. Figure 6. Area ratio. [1] George Babka, Assembléon. Moving Towards a Stable Printing Process. To satisfy either of the formulas, the contact area of the pad must be greater than the total area of the aperture wall. Effectively, the stencil thickness must be reduced to ensure satisfactory paste release at smaller aperture sizes. Figure 7 describes typical stencil thicknesses for the land sizes appropriate to commonly used chip-size passives and surface-mount IC packages. Components as small as 03015 or 0201 need the stencil thickness to be in the range 40µm to 60μm. Figure 7. Appropriate stencil thickness, according to component size. Boards containing a mixture of the smallest and largest components, like connectors or discrete power components, can challenge attempts to identify a suitable, uniform stencil thickness. A thin stencil, needed to print paste for 03015 or 0201 chips, may be unable to deposit the quantity of solder required for the larger parts. Known solutions to this challenge include selective etching of the stencil, in locations where small components are used, to reduce the thickness and so improve paste release. This can be economical, and is possible to implement without needing to use a special squeegee, such as a flexible non-metallic, squeegee. On the other hand, the board design may be constrained by the fact that the squeegee cannot follow the contours of the stencil if the etched areas are small. The smallest components may need to be confined to a limited area, which may not be practicable. As an alternative, a thinner stencil of uniform thickness suitable for printing deposits for smaller components can be used, and solder preforms placed on the pads for larger components to ensure enough solder is present for satisfactory reflow. These preforms are placed using conventional mounting techniques, but add to the BOM cost for the board and can significantly extend the cycle time for the mounter. In addition, stencils below 50µm thickness can be expensive, fragile, and difficult to procure. Greater susceptibility to “coining” caused by repeated contact of the PCB and squeegees can also shorten the operating lifespan. 3.4. Sequential Printing to Cover the Full Component Range Sequential printing can offer an effective alternative. In this approach, two stencils of different thicknesses are used – one after the other – to apply paste to the same substrate. This enables two different grades of solder paste to be deposited, and gives extra freedom to position small components anywhere on the board, without recourse to placing preforms on pads that require a larger volume of paste. A dual-lane printer with a sequential printing mode, such as the Yamaha YSP20, is needed. Figure 8 shows the results of sequential printing, using separate stencils for 1608 and 03015 components respectively. Sequential printing also provides the opportunity to reduce the cost of solder paste deposited on the board, by using the more expensive type 5.5 or 6 paste for printing fine features only. A coarser particle size can be used for depositing larger volumes of paste. Figure 8. Sequential printing using stencils of different thickness allows the print process to handle a large difference between the solder volume required for ultra-small components and that needed for larger devices. 3.5 Stencil Treatments for Improved Paste Release The surface roughness of the aperture walls is known to be an important factor influencing paste release. A low-friction surface is desirable, but applying extra polishing or coating processes to the stencil at manufacture adds to cost. Laser-cut stencils can be subjected to electrolytic polishing, which is more effective than physical polishing, in terms of its effect on the inner surfaces of the apertures. Physical polishing is effective in removing burrs from the aperture edges, which can aid sealing at the stencil-substrate join, but has little if any effect on surface finish inside the aperture. Electrolytic polishing ensures a smoother surface, and a further water-repellent silicone-based coating process can be applied to ensure the lowest possible friction. Alternatively, additive (electro-formed) stencils are known to benefit from aperture walls that have inherently lower surface friction than laser-cut apertures. Bearing in mind that the reduced stencil thickness needed to print deposits for 0201 components has the effect of lowering demands on the additive process – in terms of material deposited and time to complete the process - the cost premium for electro-forming can be lower compared to a laser-cut stencil. However, additive stencils can display variable stencil thickness, across the surface of the board, with inaccuracy and encroachment of the aperture size, during the additive process. Image stretch introducing during the photoresist phase can also be an issue. On the other hand, the accuracy of laser-cutting processes, combined with today’s high-quality fine-grain steels that produce smooth aperture walls, ensure laser-cut stencils remain a popular, effective and economical choice. 3.6. Experimental Study of Aperture Size, Stencil Properties and Solder Paste Yamaha has analysed printing processes for 0201 components, comparing performance with various aperture sizes, solder paste types, and stencil manufacturing techniques. The experimental conditions are as follows: Solder pastes: ① Senju Metal Industry M705-RGS800 Type 5 (average particle size 20μm) ② Senju Metal Industry M705-RGS800 Type 5.5 (average particle size 15μm) ③ Senju Metal Industry M705-RGS800 Type 6 (average particle size 10μm) Stencils (each thickness 50µm): ① Sonocom laser + electrolytic polished ② Sonocom laser + electrolytic polished + liquid-repellent coating ③ Sonocom additive + liquid-repellent coating Printer setup: Model: YSP with 3S squeegee Stencil detach speed: 3mm/sec Squeegee angle: 55°, Squeegee speed: 50mm/sec Squeegee pressure: 60N Solder print inspection: Model: YSi-SP high-resolution type (5/10μm) (measure solder volume fraction with 10 consecutive sheets) Figure 9. Process capability comparison for aperture sizes, solder paste types and stencil properties. Figure 9 shows the calculated process capability for each combination of aperture size, solder paste and stencil type. Several conclusions can be drawn: • Laser-cut and electro-polished stencils with water-repellent coating are able to support 0201 processes, and can deliver results superior to the additive-formed stencil • The water-repellent coating significantly improves the laser-cut stencil performance • Type 5.5 solder paste can deliver comparable results to more expensive type 6 pastes. Type 5 paste shows inferior performance A Note on Solder-Paste Particle Size The successive reductions in SMD chip-component sizes, and the effects on aperture designs, have pushed paste requirements towards finer particle sizes (table 2). Table 2. Standard paste types and suitable applications. The transition from Type 3 paste, with 35µm typical particle size, to 30µm Type 4 pastes was driven not only by the promise of greater end of line yield but also by reductions in the cost of Type-4 pastes due to rising demand. A similar transition is occurring in the present timeframe, as the cost of Type-5 pastes is becoming lower with increasing adoption in high-volume manufacturing processes. The arrival of 0201 on factory floors is pushing the requirement to Type-6. The current high price of Type-6 pastes reflects today’s low-volume applications for 0201 components in semiconductor and specialised applications. Whereas the Type-5 powder costs about 40% compared to Type-4, the material cost for Type-6 pastes can almost triple. This is of concern to high-volume manufacturers. Looking at the average particle sizes from Type-3 to Type-7, in Table 1, there is a significant difference between Type-5 and Type-6, where the ball size is reduced by half from 20µm to 10µm. Noting that paste suppliers have offset the premium for Type-5 pastes through a blend of powder sizes that create a Type-4.5, the opportunity exists to create a Type-5.5 with average particle size of 15µm. This could address the cost concerns, and may also reduce the risks associated with oxidation of the smaller particles and challenges associated with reflow. The experimental study compared results for Type-5, Type-5.54 and Type-6 pastes to assess the impact of particle size on process performance. 4. Optimising the Mounting Process for 0201 Components Assembling ultra-small components down to 0201 size (and even smaller in the future), also challenges aspects of the mounting process. Accurate component pickup holds the key to satisfactory placement, and is dependent on correct alignment of the nozzle and feeder, as well as correct pickup height. When picking up small chip resistors or capacitors, there is minimal tolerance for any offset between the centre of the component and the centre of the nozzle. In addition to errors in feeder and nozzle position, other factors such as temperature difference also have increasing influence over the placement accuracy of smaller components. Automatic correction, using a system such as Yamaha’s Multiple Accuracy Compensation System (MACS) compensates for all sources of error in the machine’s mechanisms. MACS helps to ensure component pickup at the nozzle centre by identifying the centre of the component as it is presented in the feeder tape, and by recognising the image of the nozzle tip to automatically correct for deviation from the theoretical centre. MACS has been shown to improve accuracy by a factor of three, reducing positional errors to less than 10µm (3 sigma). Automatic pickup height teaching is also critical, both to prevent damage to the small and delicate components, and to prevent mis-orientation of the component after applying the positional corrections calculated by MACS. Figure 10 illustrates aspects of the mounting process that can affect placement accuracy, and the elements that are addressed using auto position compensation and pickup-height teach. Figure 10. Automatic calculation of pickup height and nozzle position, with accuracy compensation. A note on Nozzle Maintenance The appropriate nozzle for picking up 0201 components has a pore size of 0.1mm. This extremely small pore size is more vulnerable to blocking by tiny particles than larger nozzles such as those used for 0603 or larger components. Cleanliness, therefore, is of the essence, and frequent nozzle cleaning is recommended. Automatic cleaning of all nozzles simultaneously, using a cleaner such as the SAWA Nozzle Cleaning Unit with built-in ultrasonic cleaning, can be effective and efficient. After cleaning, the entire bank of nozzles is reinstalled and aligned in a single operation. 5. Inspection Commonly used inline automatic optical inspection (AOI) systems tend to contain a 5-Mpixel sensor and cover a field of view that gives image resolution of about 19 μm. When inspecting 0201-size components, this is not sufficient to provide a crisp, clear image that can be analysed easily and accurately. To increase the resolution, the field of view must be reduced if the 5-Mpixel sensor is to be retained. One drawback is that extra images must be captured to cover the entire board, resulting in longer cycle times. On the other hand, more advanced cameras with 12.58Mpixels are now available. These can allow high-speed, high-precision inspection with selectable resolution of 12μm or 7μm, and a large field of view. The advantages of using the latest high-resolution cameras can be additionally boosted by also applying multi-dimensional and multi-angle inspection. Yamaha’s YSi-V series is capable of 3D and 2D visual inspection, at each of four different angles and in red, blue and green wavelengths, to give a multi-direction view of each component. In addition, there is laser checking for coplanarity and component-height. Users can select from various imaging and detection methods, depending on the requirements of each individual application. Conclusion The latest ultra-small components are here to stay, and make printing and placement even tougher. Manufacturers must respond by understanding the most effective techniques and equipment to solve the challenges and using these to perfect new processes. Superior control over squeegee angle, stencil thickness, alignment of mounter feeders and nozzles, pickup height, and versatile inspection modes including multi-angle, multi-wavelength, and high-resolution cameras support the advanced capabilities needed. Stencil characteristics, including rigidness of the frame, electrolytic polishing, aperture coatings, and conformable stencils that compensate for the effects of silk screening on the substrate, are also more critical. The findings presented in this paper can help all manufacturing businesses to achieve satisfactory process capability with minor changes to equipment and materials. To speak to a Yamaha technical specialist about developing processes for the 0201 generation and beyond, please call your local sales office, email, or see the website. ABOUT YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha Motor FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCMR200 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Neuss, Germany, Yamaha FA Section serves customers in all Europe. https://fa.yamaha-motor-robotics.de/ #DiscoverYamahaRobotics
  • 5. April 2018
    Yamaha Motor: First Exhibition at HANNOVER MESSE 2018, World’s Leading Trade Fair for Industrial Technology, Delivering Overall Optimization of Fully-Digitalized Production Facilities through Robot Transport
    IWATA, April 05, 2018—Yamaha Motor Co., Ltd. (Tokyo:7272) announced today that it will exhibit for the first time at the HANNOVER MESSE 2018, a B to B industrial technology trade show to be held in Hannover, Germany, from Monday, April 23 to Friday, April 27, 2018. Based on the theme of “Fully-Digitalized Production through Robot Transport,” the Yamaha Motor booth will showcase the overall construction of Fully-Digitalized Production lines, including transport processes. The HANNOVER MESSE is the world’s leading industrial trade fair, at which leading-edge industrial technology and products are gathered in one place. (The 2017 event saw exhibits held by approx. 5,000 companies attracting around 220,000 visitors). The Yamaha Motor booth at the HANNOVER MESSE will feature the Advanced Robotics Automation Platform, as well as an operation demonstration of the Platform and the YK400XR SCARA robot, showcasing the high-speed capability and precision of Yamaha robotics technology to a broad cross-section of the European market. Overview of HANNOVER MESSE 2018http://www.hannovermesse.de/home Event Period : April 23 to 27, 2018   Venue : Hannover Exhibition Grounds, Germany   No. of Exhibitors : Approximately 5,000*   No. of Attendees : Around 220,000 people* *Previous event (2017)   Yamaha Motor Exhibit Outline Exhibit Space : Hall17, B06   Details : ◎Exhibition and demonstrationsAdvanced Robotics Automation PlatformYK400XR   Contact info Oumayma Grad Marketing Communications Manager Hansemannstraße 12 41468 Neuss Germany Office: +49 2131 2013 538 Mobile: +49 1517 0233 297 Fax: +49 2131 2013 550 Email: oumayma.grad@yamaha-motor.de Web: www.yamaha-motor-im.eu Models to be Exhibited by Yamaha Motor Advanced Robotics Automation Platform This new robotics system enables automation of complex advanced production facilities rapidly and at low cost. The system enables integrated control in one unit of the multiple robots and peripheral devices necessary for production facilities, reducing wasted time through the full digitalization of facilities. ARAP Product Website:https://www.yamaha-motor.co.jp/robot/platform/en/ Explanatory video:https://youtu.be/r_x_WSFj4rc YK400XR This SCARA robot features both high quality/functionality and excellent cost-performance. These robots deliver outstanding high rigidity, high-speed capability, and high-accuracy capability. They are utilized across a wide range of production processes, from production facilities for electrical/electronic components and compact precision machinery parts requiring precision assembly, through to transfer and transport in large automotive component assembly. YK400XR Product Website:https://global.yamaha-motor.com/business/robot/lineup/ykxg/ Applications:https://global.yamaha-motor.com/business/robot/lineup/application/ykxg/ Introduction of Features:https://global.yamaha-motor.com/business/robot/lineup/ykxg/small/yk400xr/ Demonstration video:https://youtu.be/5b7JbiONZvY Industrial Robot Market Overview Driven by rising wages and increased quality requirements in China and emerging markets, as well as the decreasing working-age population in Japan and Europe, the global robot market has followed a growth trend, which is expected to continue. The average annual growth rate for the 2017 to 2024 period is forecast to grow at 4.2% on a monetary basis, and at 10.2% on a unit basis, with market expansion expected to continue in the future. History of Yamaha Motor Industrial Robots 1974 : Yamaha Motor begins research and development into industrial robots in order to streamline production and increase machining precision in its own motorcycle factories 1976 : SCARA robots introduced to Yamaha Motor motorcycle production lines 1981 : Industrial Robots business established. External sales begin 1984 : IM Business Unit established (Yamaha Motor Hamakita Plant) / SCARA robot sales begin overseas 1991   IM Technology Center completion (Sodecho, Hamamatsu city, Shizuoka Prefecture) 2006   IM Technology Center and factory expansion 2013 : China (Suzhou City) sales office establishedLinear conveyor module LCM100 launched 2016 : Advanced Robotics Automation Platform integrated controller (PLC) launched 2017 : New Robotics Business building begins operation Yamaha Motor’s lineup of industrial robots ranging from industrial robots to controllers, which powerfully support the automation of production sites, is rich in variation. YMC builds on these strengths to pursue greater efficiency and quality in increasingly complex, diverse, and high-speed production sites. About YAMAHA Robotics FA Section Yamaha Factory Automation Section (FA Section), a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation, is focused on delivering flexible, high-accuracy industrial robots for precision automation challenges. With its roots in the introduction of robot technology to Yamaha motorcycle assembly activities, the division has over 40 years’ experience solving automation challenges from factory-scale to micron-level. Yamaha’s industrial robots are now trusted by leading corporations worldwide, in activities as diverse as semiconductor fabrication and assembling electronic products, domestic appliances, automotive components, and large liquid-crystal panels. Yamaha FA Section offers a unified range of solutions for robotic assembly, including single-axis robots, SCARA, cartesian, and articulated robots. Innovations such as the LCM100 linear conveyor module; a smoother, space-saving and more versatile successor to conventional belt and roller conveyors continue to set the pace in factory automation. Core robotic technologies as well as key components and complete robot systems are all produced in-house, ensuring consistent quality and control over lead-times. Headquartered in Hamamatsu, Yamaha FA Section serves customers globally through its worldwide sales network spanning China, Taiwan, Korea, south Asia, north America, Australia/New Zealand, and Europe. www.yamaha-motor-im.eu